

IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids 17–20 September 2024 // Oslo, Norway

Conformal Multilayer Perceptron-Based Probabilistic Net-Load Forecasting for Low-Voltage Distribution Systems with PV

Anthony Faustine & Lucas Pereira

anthonyafaustine@eaton.com

sambaiga.github.io

Eaton's Centre For Intelligent Power (CIP)

Power Load Forecasting for Future Energy Systems

- More challenging =>Less predictable pattern, B-PV, and volatile RES generation.
- Need for uncertainty quantification=>Growing uncertainty in Load demands and generation.

Quantifying forecast uncertainty with Intervals

Goal: Produce future forecasts with confidence

Build predicted interval $C_{1-\alpha}$ such that $p(y_{t+h} \in C_{1-\alpha}) > 1-\alpha$

The predictive intervals should be: agnostic to the model, data distribution and valid in finite samples.

Probabilistic Forecast Methods

Parametric density learning

Quantile-regression

Limitation:

- Assume a specific distribution for the data, which might not always be accurate.
- No theoretical guarantee with a finite sample

Conformal Prediction:

A distribution-free uncertainty estimation method that constructs valid prediction intervals.

Train algorithm $f_{ heta}$

$$f_{\theta}(\mathbf{x}_L, \mathbf{c}_H) = \hat{\mu}_{\theta}$$
 ———

On calibration set $\,\mathcal{D}_{cal}\,$

- 1. Get the conformity score $\gamma_k = |y_k \mu_{\theta}(x_k)|$
- **2.** Compute $1-\alpha$ quantiles

$$\varepsilon = \mathcal{Q}_p\left(\{\gamma_0, \dots \gamma_k\}\right)$$

Prediction step:

- 1. Obtain $\mu_{\theta}(x)$
- 2. Build intervals

$$C_{1-\alpha} = \left[\mu_{\theta} \pm \varepsilon\right]$$

Conformalised MLPF

Combine the MLPF with SCP to quantify the uncertainty of the point net-load forecast in a predictive interval.

Fig. 1: Overview of conformalised-MLPF.

Efficiency through Simplicity: MLP-based Approach for Net-Load Forecasting with Uncertainty Estimates in Low-Voltage Distribution Networks Faustine, Anthony, Pereira, Lucas, and Nuno J Nunes. IEEE Transactions on Power Systems 2024.

1. Training MLPF

MLPF effectively capture the complex relationship between historical power features and future covariates.

$$\mathcal{L}_{\theta}(\mathbf{y}_H, \hat{\mathbf{y}}_H) = \frac{1}{H} \sum_{t=1}^{H} \lambda (y_t - \hat{y}_t)^2 + (1 - \lambda)|y_t - \hat{y}_t|$$

PyPi: https://pypi.org/project/mlpforecast/

2. Conformal calibration

For each data point k in the calibration data: Group the obtained H forecasts to generate a vector of non-conformity scores.

$$\gamma_H^k = \{\gamma_{t+1}, \dots, \gamma_{t+H}\}$$

Two non-conformity score are considered

$$\gamma_{sgn}(x_k) = |y_h^k - \mu_{\theta}(x_k)_h| \qquad \gamma_{sgn}(x_k) = y_h^k - \mu_{\theta}(x_k)_h$$

$$\gamma_{sgn}(x_k) = y_h^k - \mu_\theta(x_k)_h$$

Experiment: Evaluation and Dataset

Datasets

- Madeira LowVoltage distribution substation dataset in Portugal (MLVS-PT)
- The Stentaway substation dataset in Plymouth-UK (SPS-UK)

Experiment: Benchmark & Metrics

Benchmarks:

1. Quantile Regression with

$$q = \left\{ \frac{\alpha}{2}, 0.1, 0.2, \dots, 0.9, 1 - \frac{\alpha}{2} \right\}$$

2. Monte-Carlo Dropout

(b) Monte Carlo Dropout MLPF (MLPF-MCD)

Metrics

PICP:Predictive Interval Coverage Probability

$$PICP = \frac{1}{H} \sum_{t=1}^{H} \begin{cases} 0, & \notin [\mathcal{C}_t^U, \mathcal{C}_t^L] \\ 1, & y_t \in [\mathcal{C}_t^U, \mathcal{C}_t^L] \end{cases}$$

NMPI:Normalized Median Prediction Interval width

$$\text{NMPI} = \frac{1}{R} \text{median}(\mathcal{C}_d)$$

CWE

$$\text{CWE} = 2 \cdot \frac{\gamma_{nmpi} \cdot \gamma_{pcip}}{\gamma_{picp} + \gamma_{nmpi}}$$

Results: Non-conformity scores

		PICP	NMPI	CWE
Dataset	Model			
MLVS-PT	MLPF-SCPR MLPF-SCPS			
SPS-UK	MLPF-SCPR MLPF-SCPS		$0.48 \pm 0.15 \\ 0.22 \pm 0.07$	$\begin{array}{c} 0.70 \pm 0.17 \\ 0.68 \pm 0.25 \end{array}$

Results: ProbForecast Benchmark

TABLE I: Experiment 2

Dataset	Model	NRMSE	PICP	NMPI	CWE
MLVS-PT	MLP-MCD	0.13	0.72	0.22	0.75
	MLP-QR	0.09	0.84	0.26	0.82
	Conformal-MLPF	0.09	0.84	0.28	0.79
SPS-UK	MLP-MCD	0.19	0.82	0.36	0.75
	MLP-QR	0.13	0.96	0.32	0.83
	Conformal-MLPF	0.13	0.78	0.24	0.74

Conformal-MLPF performed competitively on par with the well-established QR without imposing any restrictive assumptions about the underlying data distribution.

Conclusion

- Conformal-MLPF: Efficient, CP-based neural network for net-load forecasting.
- No restrictive assumptions: Competitive performance with QR, outperforms MCD.
- § Sign-based non-conformity: Balances interval coverage and width effectively

SCP: Fixed intervals may lead to marginal coverage. Future work: explore adaptive CP techniques.

IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids 17–20 September 2024 // Oslo, Norway

About Eaton

We make what matters work.

We're an intelligent power management company committed to improving the quality of life and the environment. Our products, technologies and services make a difference in the world.

\$23.2B

>92K

Established

Operate in Countries

NYSE ticker

Market Segments

Aerospace
Commercial
& Industrial
Passenger cars

Commercial
Machinery

Residential

Lidility

Lidility

Machinery

Residential

Lidility

Eaton's Centre For Intelligent Power (CIP)

