





Eaton's Centre For Intelligent Power (CIP)

### Scalable and Efficient MLP-based Fully Parameterised **Quantile for Probabilistic Power Forecasting**

Anthony Faustine, Lead data scientist, Eaton CIP-Dublin, Lucas Pereira & Nuno J Nunes (FEELab, LARSys, Tecnico Lisboa)



anthonyafaustine@eaton.com www sambaiga.github.io







DIJON **FRANCE JUNE 30 - JULY 3** 

## **Outline**

- Load Forecasting for Future Energy Systems .
- Scalable MLPF Architecture.
- MLPFQR: A Novel Approach to Probabilistic Load Forecasting
- Experiment & Benchmark
- Results
- Conclusion

#### **Power Load Forecasting for Future Energy Systems**

- More challenging =>Less predictable pattern, B-PV, and volatile RES generation.
- **Need for uncertainty quantification=>Growing** uncertainty in Load demands and generation.
- Scalability => Numerous LV substations (17K) substations in Spain DSO), buildings, etc.





Massive penetration of Distributed Energy Resources (DERS)



- 1. RES such as PV, with Energy Storage System (ESS)
- 2. Prosumers, such as Local Energy Communities (LECs).
- 3. Low carbon technologies (LCTs) such Electric Vehicle (EVs), and Electric Heating Systems (EHSs)



Forecast





**Optimise and Control** 

Control & optimisation of ESS system

Flexibility and demand response





Need for accurate, reliable and scalable probabilistic forecasting.

## **Beyond Current Methods: The Power of DNNs in Power Load Forecasting**

- DNNs excel at identifying non-linear relationships=> Crucial for accurate load forecasting with DERs.
  - DNN Architectures: LSTMs, Transformers and now LLM such as Chronos, TimeGPT etc => computationally expensive to train and run, limiting scalability.



➡ The Shift: Lightweight DNNs: New architectures like D-LiNEAR, N-BEATS, and NHITS offer a balance => trade-off between accuracy and lower computional cost.



<sup>\*</sup>Oreshkin, Boris N., et al. "N-BEATS: Neural basis expansion analysis for interpretable time series forecasting." *arXiv preprint* arXiv:1905.10437 (2019).

<sup>\*</sup>Challu, Cristian, et al. "NHITS: Neural Hierarchical Interpolation for Time Series Forecasting." *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 37. No. 6. 2023.

# Net Load and Weather Variables: A Statistical and Empirical Analysis

Weather variables significantly influence both power demands and generation. .



\*\*Chu Y, Pedro HTC, Kaur A, Kleissl J, Coimbra CFM. Net load forecasts for solar-integrated operational grid feeders. Solar Energy. 2017;158:236-246. doi:10.1016/j.solener.2017.09.052.

## A Novel Scalable MLP Architecture For Power Forecasting (MLPF)



**MLPF** effectively capture the complex relationship between historical power features and future covariates.

$$\mathcal{L}_{\theta}(\mathbf{y}_H, \hat{\mathbf{y}}_H) = \frac{1}{H} \sum_{t=1}^{H} \lambda (y_t - \hat{y}_t)^2 + (1 - \lambda)|y_t - \hat{y}_t|$$

- Efficiency through Simplicity: MLP-based Approach for Net-Load Forecasting with Uncertainty Estimates in Low-Voltage Distribution Networks Faustine, Anthony, Pereira, Lucas, and Nuno J Nunes. IEEE Transactions on Power Systems 2024.
- Github: https://github.com/sambaiga/mlpforecast/
- PyPi: <a href="https://pypi.org/project/mlpforecast/">https://pypi.org/project/mlpforecast/</a>

# MLPFQR: A Novel Approach to Probabilistic Load Forecasting

- **QR** is a successful non-parametric approach for probabilistic forecast.
- It model complex distributions without making any apriori assumptions on the underlying distribution of the data.

$$p(y_t|\mathbf{x}_L, c_H) = \{Q_{\theta}(\hat{\tau}_{\theta H}^1), Q_{\theta}(\hat{\tau}_{\theta H}^2) \dots Q_{\theta}(\hat{\tau}_{\theta H}^N)\}$$

where  $\tau \in [0,1]$  is a set of  $N \times H$  quantile probabilities satisfying:

$$\tau_t^1 < \tau_t^2 < \dots \tau_t^{N-1} < \tau_t^N$$



**Current QR methods** often rely on heuristic approaches to select the specific quantile probabilities ( $\tau$ ) used in the model=> may not always capture the most relevant aspects of the forecast distribution, potentially leading to suboptimal results.

## Overcoming Heuristics: Parameterised QR with MLPF.

**№** We introduce a novel architecture that learns both the quantiles fractions and quantile values directly from the data.





$$\mathcal{L}_{\tau}(\rho_{\kappa}(\epsilon)) = \frac{1}{T} \sum_{t=1}^{T} \sum_{n=1}^{N} |\tau_{t}^{n} - \mathbb{I}\{\epsilon_{\tau_{t}^{n}} < 0\}| \frac{\rho_{\kappa}(\epsilon_{\tau_{t}^{n}})}{\kappa} \qquad W_{1}(Q_{\theta}(\hat{\tau}_{\theta t}), Q_{\theta}(\tau)) = \sum_{t=1}^{T} \sum_{n=0}^{N-1} \int_{\tau_{t}^{n}}^{\tau_{t}^{n+1}} |Q_{\theta}(\tau_{t}^{n}) - Q_{\theta}(\hat{\tau}_{\theta t}^{n})| d\tau$$

- \*\* A. Faustine and L. Pereira, "FPSeq2Q: Fully Parameterized Sequence to Quantile Regression for Net-Load Forecasting With Uncertainty Estimates," in *IEEE Transactions on Smart Grid*, vol. 13, no. 3, pp. 2440-2451, May 2022, doi: 10.1109/TSG.2022.3148699.
- \*\* A. Faustine, N. J. Nunes and L. Pereira, "Efficiency through Simplicity: MLP-based Approach for Net-Load Forecasting with Uncertainty Estimates in Low-Voltage Distribution Networks," in *IEEE Transactions on Power Systems*, doi: 10.1109/TPWRS.2024.3400123.

#### **Experiment & Benchmark**



| Category       | Model     | Description                                                                                                                                |
|----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Baseline       | S-Naive   | Naive seasonal model [111].                                                                                                                |
| Statistical    | MTL       | Multiple Seasonal-Trend decomposition using LOESS with ARIMA [112].                                                                        |
| Traditional ML | CAT<br>RF | CatBoost, a gradient boosting library [131].<br>Random Forest model [41].                                                                  |
| DNN-based      | NBEATS    | Deep stack of fully connected layers with backward and forward residual links. Basis expansion for modeling non-linear relationships [60]. |
|                | NHITS     | Hierarchical interpolation and multi-rate data sampling for short and long-term effects [44].                                              |
|                | LSTM      | Long Short-Term Memory networks, excel at capturing temporal dependencies [148].                                                           |
|                | TimesNet  | CNN-based model decomposing temporal patterns into intraperiod and interperiod variations using a 1D-to-2D transformation [149].           |
|                | PatchTST  | Transformer-based model for multivariate time series, using patching and channel independence [150].                                       |
|                | FEDformer | Transformer-based model for long-term forecasting, separating different frequency components [151].                                        |

#### **Datasets**

- Madeira LowVoltage distribution substation dataset in Portugal (MLVS-PT)
- The Stentaway substation dataset in Plymouth-UK (SPS-UK)
- Albanian national electricity consumption and weather conditions for 2016-2019 (ALBANIA)
- Hybrid power plant is the aggregate solar capacity in East England (PV).

#### **Metrics**

- NMRSE:Normalized Root Mean Squared Error
- MAE:Mean Absolute Error
- PICP:Predictive Interval Coverage Probability
- NMPI:Normalized Median Prediction Interval width
- CRPS:Continuously Ranked Probability Score
- Winker Score (WS): Winkler Score
- Statistical test: Diebold-Mariano-test

**Results: Point forecast benchmark** 

MLVS-PT Dataset



10

#### **Results: ProbForecast Benchmark**



- MLPFQR produce a probabilistic forecast with a good trade-off between covearge coverage (capturing the entire range of possibilities) and sharpness (providing a precise forecast).
- It effectively captures the entire distribution of future outcomes while maintaining a high degree of accuracy in the predicted quantiles

# The Future is Probabilistic: A Call to Action

- DERs are transforming the grid, creating a dynamic and complex system.
- Fraditional forecasting methods struggle to predict the variable nature of DERs.



#### The Future of Power Forecasting is Probabilistic.

- Less is More: Sometimes, simpler approaches can be highly effective.
- Our proposed lightweight MLPFQR architecture balances complexity with efficiency
- Delivers accurate forecasts while quantifying uncertainty and
- Achieves high performance compared to complex DNN models.

Let's embrace probabilistic forecasting and invest in developing efficient and scalable solutions.







#### **About Eaton**

We make what matters work.

We're an intelligent power management company committed to improving the quality of life and the environment. Our products, technologies and services make a difference in the world.

\$23.2B

>92K

Employees around the world

Established 9

Operate in

170
countries

NYSE ticker





44TH SF



DIJON FRANCE JUNE 30 - JULY 3