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Power Load Forecasting for Future Energy Systems

€ More challenging =>Less predictable pattern, B- *7__,, 1 — s
PV, and volatile RES generation. 2601 — m z Y 2

@ Need for uncertainty quantification=>Growing ?O\JV g 2‘\/\/\
uncertainty in Load demands and generation. =20 =0

® Scalability => Numerous LV substations (17K "0 iﬂifrlffl?ﬁ:{16;\?262'2 02 4‘H601i1(‘?f1't2£;156a1v'82'02'2
substations in Spain DSO), buildings, etc. @& MLVS.PT ) SPS.UK

Optimise and Control

(Smart) power gnd m Forecast
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Smart meter

| Control & optimisation of ESS system
/ Flexibility and demand response
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Co-ordinated EV Charging

Massive penetration of Distributed Energy Resources (DERS)
1. RES such as PV, with Energy Storage System (ESS) Unify planning and operation

2. Prosumers, such as Local Energy Communities
(LECs).

3. Low carbon technologies (LCTs) such Electric
Vehicle (EVs), and Electric Heating Systems (EHSs)
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Need for accurate, reliable and scalable probabilistic forecasting.




Beyond Current Methods: The Power of DNNs in Power Load

Forecasting

& DNNs excel at identifying non-linear relationships=> Crucial for accurate load forecasting
with DERs.

¢ DNN Architectures: LSTMs, Transformers and now LLM such as Chronos, TimeGPT etc =>
computationally expensive to train and run, limiting scalability.
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&£ TL:DR: Amazon's new foundational model Chronos is 10% less accurate and
500% slower than training classical statistical models. &

Gemini Ultra

$
¢ The Shift: Lightweight DNNs: New architectures like D-LINEAR, N- 1914M

BEATS, and NHITS offer a balance => trade-off between accuracy S
and lower computional cost. iy

A

«Oreshkin, Boris N., et al. "N-BEATS: Neural basis expansion analysis for interpretable time series forecasting." arXiv preprint
arXiv:1905.10437 (2019).
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%Challu, Cristian, et al. "NHITS: Neural Hierarchical Interpolation for Time Series Forecasting." Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 37. No. 6. 2023. 4



Net Load and Weather Variables: A Statistical and Empirical
Analysis

Weather variables significantly influence both power demands and generation. .
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Comb-Type

A Novel Scalable MLP Architecture For Power Forecasting
(MLPF)
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MLPF effectively capture the complex relationship between historical power features
and future covariates.
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i« Efficiency through Simplicity: MLP-based Approach for Net-Load Forecasting with Uncertainty Estimates in Low-Voltage Distribution
Networks Faustine, Anthony, Pereira, Lucas, and Nuno J Nunes. IEEE Transactions on Power Systems 2024.
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& Github: https:/github.com/sambaiga/mlpforecast/

A

& PyPi: https:/pypi.org/project/mlpforecast/
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MLPFQR: A Novel Approach to Probabilistic Load
Forecasting

¢ QR is a successful non-parametric approach for
probabilistic forecast.

¢ It model complex distributions without making any

apriori assumptions on the underlying distribution of ‘ e 2% prea 30 o
the data. 0(7)
. . ) o\T
p(yelx, cr) = {Qo(75r), Qo(T5p) - - - Qol(Tgy)}
where 7 € [0, 1] is a set of N x H quantile probabilities satisfying:
T
1 2 N-1 N
Ty < Ty <...Ty < T é(hg)

Current QR methods often rely on heuristic approaches to select the specific quantile probabilities

(T) used in the model=> may not always capture the most relevant aspects of the forecast
distribution, potentially leading to suboptimal results.



Overcoming Heuristics: Parameterised QR with MLPF.

/N
¢ We introduce a novel architecture that learns both ‘\9 . )
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2¢ A. Faustine and L. Pereira, "FPSeq2Q: Fully Parameterized Sequence to Quantile Regression for Net-Load Forecasting With Uncertainty
Estimates," in IEEE Transactions on Smart Grid, vol. 13, no. 3, pp. 2440-2451, May 2022, doi: 10.1109/TSG.2022.3148699.
2¢ A. Faustine, N. J. Nunes and L. Pereira, "Efficiency through Simplicity: MLP-based Approach for Net-Load Forecasting with Uncertainty
Estimates in Low-Voltage Distribution Networks," in [EEE Transactions on Power Systems, doi: 10.1109/TPWRS.2024.3400123. )



Experiment & Benchmark
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Category Model Description
Baseline S-Naive Naive seasonal model [111].
Statistical MTL Multiple Seasonal-Trend decomposition using LOESS with
ARIMA [112].
. CAT CatBoost, a gradient boosting library [131].
Traditional ML RF Random Forest model [41].
NBEATS Deep stack of fully connected layers with backward and forward
residual links. Basis expansion for modeling non-linear relation-
i ships [60].
DNN-based NHITS Hierarchical interpolation and multi-rate data sampling for short
and long-term effects [44].
LSTM Long Short-Term Memory networks, excel at capturing temporal
dependencies [148].
TimesNet ~ CNN-based model decomposing temporal patterns into intrape-
riod and interperiod variations using a 1D-to-2D transformation
[149].
PatchTST  Transformer-based model for multivariate time series, using
patching and channel independence [150].
FEDformer Transformer-based model for long-term forecasting, separating

different frequency components [151].

Datasets

¢ Madeira LowVoltage distribution
substation dataset in Portugal (MLVS-PT)

¢ The Stentaway substation dataset in
Plymouth-UK (SPS-UK)

¢ Albanian national electricity consumption
and weather conditions for 2016-2019
(ALBANIA)

¢ Hybrid power plant is the aggregate solar
capacity in East England (PV).

Metrics

¢ NMRSE:Normalized Root Mean Squared
Error

¢ MAE:Mean Absolute Error

¢ PICP:Predictive Interval Coverage
Probability

¢ NMPI:Normalized Median Prediction
Interval width

¢ CRPS:Continuously Ranked Probability
Score

¢ Winker Score (WS): Winkler Score

¢ Statistical test: Diebold—Mariano-test



Results: Point forecast benAchmark
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Results: ProbForecast Benchmark
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MLPFQR produce a probabilistic forecast with a good trade-off between covearge coverage
(capturing the entire range of possibilities) and sharpness (providing a precise forecast).

It effectively captures the entire distribution of future outcomes while maintaining a high degree o
accuracy in the predicted quantiles

1



The Future i1s Probabilistic: A Call
to Action

¢ DERs are transforming the grid, creating a Control & optimisation of ESS system
dynamic and complex system. | /
o Y 00 p Y _» Flexibility and demand response
¢ Traditional forecasting methods struggle to ™
predict the variable nature of DERs. x TSy r—
| - - ging

Unify planning and operation

The Future of Power Forecasting is Probabilistic.

SEC

Less is More: Sometimes, simpler approaches can be highly effective.

Our proposed lightweight MLPFQR architecture balances complexity with efficiency
Delivers accurate forecasts while quantifying uncertainty and

¢ Achieves high performance compared to complex DNN models.

*EC

SEC

Let's embrace probabilistic forecasting and invest in developing efficient and
scalable solutions.
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