UNET-NILM: A Deep Neural Network for Multi-tasks Appliances State Detection and Power Estimation in NILM 5th International Workshop on Non-Intrusive Load Monitoring (co-located with ACM BuildSys 2020 Workshop) #### **Anthony Faustine (CeADAR-UCD, Ireland)** Lucas Pereira (Técnico Lisboa, Portugal) Hafsa Bousbiat (University of Klagenfurt, Austria) Shridhar Kulkarni(Trinity College Dublin, Ireland) ## Introduction DNNs for NILM have moved to the spotlight recently. • One DNN is trained for one particular appliance or task at a time (single-appliance/single-task). Require a lot of computations. Do not allow to learn dependencies between appliances usage ## Multi-targets-multi-tasks NILM Multi-task learning: An approach to inductive transfer that improves generalisation by using the domain information present in the training feature space of dependent tasks ## Multi-targets-multi-tasks NILM - Multi-target Quantile Regression for Power Estimation: - Estimate the power of multiple appliances based on a shared feature space. Anthony Faustine teal ## Multi-targets-multi-tasks NILM - Multi-label learning for appliances states detection: - Multi-label learning aims at predicting one or more labels for each input instance Anthony Faustine teal ## Appliance State Profile Generation Sequence to Quantile for state profile generation ## **Evaluation Methodology** - Data set - UK-DALE house 1 (January to March) - with 6s sampling. Kettle (KT), Fridge (FRZ), DishWasher (DW), Washing machine(WM), Microwave (MW) ## **Evaluation Methodology** #### 1. Evaluation Metrics Mean Average Error (MAE) $$\frac{1}{TM} \sum_{i=1}^{T} \sum_{m=1}^{M} |\hat{y}_m(t) - y_m(t)|$$ MAE quantifies the error predicted power at every time point #### Normalised Disaggregation Error (NDE) $$\frac{\sum_{i=1}^{T} \sum_{m=1}^{M} (\hat{y}_m(t) - y_m(t))^2}{\sum_{i=1}^{T} \sum_{m=1}^{M} y_m(t)^2}$$ NDE measures the normalised error of the squared difference ## Estimated Accuracy (EAC) $$1 - \frac{\sum_{i=1}^{T} \sum_{m=1}^{M} |\hat{y}_m(t) - y_m(t)|}{2 \sum_{m=1}^{T} \sum_{m=1}^{M} y_m(t)}$$ EAC provides the total estimated accuracy ## Example-based F1 (exb-f1) $$\frac{\sum_{i=1}^{M} 2 \cdot t_{p}}{\sum_{i=1}^{M} y_{i} + \sum_{i=1}^{M} \hat{y}_{i}}$$ Exb-f1 measures the ratio of correctly predicted labels to the sum of the total true and predicted labels ## Results | | EAC | | MAE | | NDE | | $exb - F_1$ | | |-----------|-------------------|-------------------|--------------------|--------------------|-------------------|-------------------|-------------|-----------| | Appliance | 1D-CNN | UNet-NILM | 1D-CNN | UNet-NILM | 1D-CNN | UNet-NILM | 1D-CNN | UNet-NILM | | KT | 0.589 ± 0.003 | 0.677 ± 0.017 | 20.390 ± 0.169 | 16.003 ± 0.824 | 0.674 ± 0.010 | 0.429 ± 0.039 | 0.944 | 0.956 | | FRZ | 0.923 ± 0.000 | 0.937 ± 0.000 | 18.583 ± 0.006 | 15.124 ± 0.014 | 0.073 ± 0.000 | 0.072 ± 0.000 | 0.964 | 0.962 | | DW | 0.875 ± 0.000 | 0.914 ± 0.000 | 9.884 ± 0.012 | 6.764 ± 0.012 | 0.126 ± 0.000 | 0.080 ± 0.000 | 0.913 | 0.909 | | WM | 0.875 ± 0.000 | 0.909 ± 0.000 | 15.758 ± 0.009 | 11.506 ± 0.006 | 0.111 ± 0.000 | 0.062 ± 0.000 | 0.954 | 0.963 | | MW | 0.630 ± 0.002 | 0.753 ± 0.003 | 9.690 ± 0.055 | 6.475 ± 0.072 | 0.656 ± 0.007 | 0.334 ± 0.005 | 0.907 | 0.916 | | Average | 0.778 ± 0.003 | 0.838 ± 0.004 | 14.86 ± 0.050 | 11.174 ± 0.186 | 0.328 ± 0.003 | 0.195 ± 0.009 | 0.937 | 0.941 | ### Conclusion & Future Work - UNET-NILM is a multi-task NILM model that estimates both ON/OFF states and power consumption along with the uncertainty of its predictions. - UNET-NILM demonstrated competitive results with a good confidence. #### Future Work: - Evaluation of the proposed approach on real aggregate with larger number of appliances and more advanced benchmarks. - Consider other uncertainty estimation approach. ## Thank You! For Your Attention E-Mail: sambaiga@gmail.com The University of Dublin