UNET-NILM: A Deep Neural Network for Multi-tasks Appliances State Detection and Power Estimation in NILM

5th International Workshop on Non-Intrusive Load Monitoring

(co-located with ACM BuildSys 2020 Workshop)

Anthony Faustine (CeADAR-UCD, Ireland)

Lucas Pereira (Técnico Lisboa, Portugal)
Hafsa Bousbiat (University of Klagenfurt, Austria)
Shridhar Kulkarni(Trinity College Dublin, Ireland)

Introduction

 DNNs for NILM have moved to the spotlight recently.

• One DNN is trained for one particular appliance or task at a time (single-appliance/single-task).

Require a lot of computations.

 Do not allow to learn dependencies between appliances usage

Multi-targets-multi-tasks NILM

 Multi-task learning: An approach to inductive transfer that improves generalisation by using the domain information present in the training feature space of dependent tasks

Multi-targets-multi-tasks NILM

- Multi-target Quantile Regression for Power Estimation:
 - Estimate the power of multiple appliances based on a shared feature space.

Anthony Faustine teal

Multi-targets-multi-tasks NILM

- Multi-label learning for appliances states detection:
 - Multi-label learning aims at predicting one or more labels for each input instance

Anthony Faustine teal

Appliance State Profile Generation

Sequence to Quantile for state profile generation

Evaluation Methodology

- Data set
 - UK-DALE house 1 (January to March)
 - with 6s sampling.

 Kettle (KT), Fridge (FRZ), DishWasher (DW), Washing machine(WM), Microwave (MW)

Evaluation Methodology

1. Evaluation Metrics

Mean Average Error (MAE)

$$\frac{1}{TM} \sum_{i=1}^{T} \sum_{m=1}^{M} |\hat{y}_m(t) - y_m(t)|$$

MAE quantifies the error predicted power at every time point

Normalised Disaggregation Error (NDE)

$$\frac{\sum_{i=1}^{T} \sum_{m=1}^{M} (\hat{y}_m(t) - y_m(t))^2}{\sum_{i=1}^{T} \sum_{m=1}^{M} y_m(t)^2}$$

NDE measures the normalised error of the squared difference

Estimated Accuracy (EAC)

$$1 - \frac{\sum_{i=1}^{T} \sum_{m=1}^{M} |\hat{y}_m(t) - y_m(t)|}{2 \sum_{m=1}^{T} \sum_{m=1}^{M} y_m(t)}$$

EAC provides the total estimated accuracy

Example-based F1 (exb-f1)

$$\frac{\sum_{i=1}^{M} 2 \cdot t_{p}}{\sum_{i=1}^{M} y_{i} + \sum_{i=1}^{M} \hat{y}_{i}}$$

Exb-f1 measures the ratio of correctly predicted labels to the sum of the total true and predicted labels

Results

	EAC		MAE		NDE		$exb - F_1$	
Appliance	1D-CNN	UNet-NILM	1D-CNN	UNet-NILM	1D-CNN	UNet-NILM	1D-CNN	UNet-NILM
KT	0.589 ± 0.003	0.677 ± 0.017	20.390 ± 0.169	16.003 ± 0.824	0.674 ± 0.010	0.429 ± 0.039	0.944	0.956
FRZ	0.923 ± 0.000	0.937 ± 0.000	18.583 ± 0.006	15.124 ± 0.014	0.073 ± 0.000	0.072 ± 0.000	0.964	0.962
DW	0.875 ± 0.000	0.914 ± 0.000	9.884 ± 0.012	6.764 ± 0.012	0.126 ± 0.000	0.080 ± 0.000	0.913	0.909
WM	0.875 ± 0.000	0.909 ± 0.000	15.758 ± 0.009	11.506 ± 0.006	0.111 ± 0.000	0.062 ± 0.000	0.954	0.963
MW	0.630 ± 0.002	0.753 ± 0.003	9.690 ± 0.055	6.475 ± 0.072	0.656 ± 0.007	0.334 ± 0.005	0.907	0.916
Average	0.778 ± 0.003	0.838 ± 0.004	14.86 ± 0.050	11.174 ± 0.186	0.328 ± 0.003	0.195 ± 0.009	0.937	0.941

Conclusion & Future Work

- UNET-NILM is a multi-task NILM model that estimates both ON/OFF states and power consumption along with the uncertainty of its predictions.
- UNET-NILM demonstrated competitive results with a good confidence.

Future Work:

- Evaluation of the proposed approach on real aggregate with larger number of appliances and more advanced benchmarks.
- Consider other uncertainty estimation approach.

Thank You!

For Your Attention

E-Mail: sambaiga@gmail.com

The University of Dublin