Anthony Faustine, Dirk Deschrijver and Tom Dhaene

Improved Appliance Classification in NILM using Recurrence Plots and Convolutional Neural Networks

1. Introduction

Problem:

- Recognizing loads in buildings is a challenging problem.
- The performance of the existing approaches is yet unsatisfactory.

Goal:

To improve performance of appliances classification using RP and CNN

Major assumption:

only one appliance is active at a time

2. Method

- Extract 20 cycles of voltage and current just after an event has been detected.
- Align the extracted cycles at the zero-crossing of the voltage and extract one-cycle event current and voltage with size $T_s = \frac{J^s}{f}$
- Apply Piecewise Aggregation Approximation (PAA) to reduce dimension from (w,1) $(T_s, 1b)$
- $R_{\rm p}$ ased on aligned event current and voltage such that: Compute

$$R_{i,j} = \begin{cases} 1 & \text{if } dm_{i,j} \ge \epsilon \\ 0 & \text{otherwise} \end{cases}$$

 $dm_{i:j}$ euclidean norm

recurrence threshold

Use generated RPs as input of CNN

3. Experiment:

Experimental set-up

- Leave-one-house-out cross validation
- SGD optimisation with Ir = 0.01, m = 0.9
- Use macro averaged F score to evaluate performance
- Benchmark with VI

[De Baets, Leen, et al. (2017)

"Appliance classification using VI

networks", Energy and Buildings]

trajectories and convolutional neural

e to evaluate performance
$$F_{macro} = \frac{1}{K} \sum_{i=1}^{K} \sum_{i=1}^{K} \sum_{j=1}^{K} \sum_{j=1$$

Dataset:

- PLAID: 11 appliance types, 55 households, submetered at 30 kHz
- WHITED: 45 appliance types, submetered at 41.1 kHz

Contact anthony.faustine@ugent.be www.ugent.be/ea/idlab/en/

