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Learning goal

• Understand why ML strategies is important.

• Understand how to de�ne optimizing and satisfying
evaluation metrics.

• Understand how to de�ne human level performance.

• Learn how to do de�ne key priorities in ML projects.
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Introduction

Consider a classi�cation problem

• Suppose you train ML model for such problem and achieve
90% accuracy.

• This is not good performance

Question: What should we do to improve performance?
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Introduction: Why ML Strategy ?

Question: What should we do to improve performance?

Several options to try

• Collect more data.

• Increase number of iterations with SGD or try di�erent optimization
algorithms (Adam etc).

• Increase model complexity.

• Use regularization (dropout, L2, or L1)

• Change network architecture (hidden units, activation function)
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Introduction: Why ML Strategy ?

Challenge: How to select best and e�ective options to pursue?
• Poor selection → end up spending more time in direction that wont
improve performance at the end.

• Best selection → quickly and e�ciently get your machine learning
systems working.

• Need ML strategy to perform best selection.

Machine learning strategy is useful to iterate through ideas
quickly and to e�ciently reach the project outcome.
• It o�er ways to analyse ML problem and guide in the direction of the
most promising options to try.
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Orthogalization

The challenges with building machine learning systems ⇒ so
many things to try or change (hyperparameters etc).

• It is very important to be speci�c on what to tune in order
to try achieving one e�ect.

Orthogonalization

Refers to the concept of picking parameters (knobs) to tune which only
adjust one outcome of the machine learning model.

• It is a system design property that insure that modifying parameter of
algorithm will not create or propagate side e�ects to other component
of the system.

• It make easier to verify the algorithms independently from one
another.

• It reduce testing and development time.
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Orthogalization

• For Supervised ML system to work well you have to achieve

1 Best performance in training set
2 Best performance in validation/dev set
3 Best performance in test set
4 Perform well in real world.

• Use di�erent knobs (parameters) to improve performance of each part.
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Orthogalization

1 To improve performance in training set

• use bigger neural network or switch to a better optimization
algorithms (adam etc)

2 To improve performance in validation/dev set

• Apply regularization or use bigger training set

3 To improve performance in test set

• Increase size of dev set.

4 Poor performance in real world.

• Change development set.
• Change the loss function
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Evaluation metric

Consider week one dropout challenge:

Model Precision Recall

A 95% 90%

B 98% 85%

Precision

• how precise/accurate your model is out of those predicted positive,
how many of them are actual positive.

• good measure to determine, when the costs of False Positive is high

Recall

• how many of the actual positives the model capture through labelling
it as positive

• good measure to determine, when the costs of False Negative is high
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Evaluation metric: use single evaluation metric

The problem of using two or more evaluation metrics → di�cult
to make decision

• Use one evaluation metric e.g (F-1 score which is harmonic
average of precision and recall)

Model Precision Recall F-score

A 95% 90% 92.4%

B 98% 85% 91.0%

• Having single number evaluation metric ⇒ improve
e�ciency in decision making.
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Evaluation metric: Satisfying and optimizing metric

What if you want to combine more than one metrics?

• Suppose you are interested in both F-score and running
time.

Model F-score Running time

A 92.4% 80ms

B 91.0% 35ms

C 95.0% 100s

• Choose one metric as optimizing metric and others as
satisfying metrics.

• For example: maximize F-score (optimizing metric) and
minimize running time (satisfying metric) such as it is less
than t
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Evaluation metric: Satisfying and optimizing metric

If you have N metrics choose one metric as optimizing metrics
and N − 1 metrics as satisfying metrics

• Consider fraud detection system
• How likely to detect fraud transaction
• Minimize False Negative.

• Optimize Accuracy subject to minimizing False Negative
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Data setup: Train/dev/test set

The way you set up/ divide your data into train/dev/test
impact the progress of your project.

• Make sure the data have same distribution in each partition
→ randomly sha�e data before split etc.

• Choose a dev set and test to re�ect data you expect in
future

• If you have enough dataset use 98/1/1 ratio instead of the
traditional 60/20/20 → use more data for training and less
dev and test set

• The development set should be big enough to evaluate
di�erent ideas.
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Comparing to human level performance

• Bayes optimal performance: best possible performance →
best theoretical function fθ(x : y)

• Human level performance is not much di�erent to bayes
optimal performance.
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Comparing to human level performance

Why compare with human level performance

Human are quite good at lot of tasks → comparing your poorly
performing ML to human level performance can help

• Get labelled data from humans

• Gain insight from manual error analysis → why did a
person get it right?

• Better analysis of bias and variance.
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Bias Variance Analysis: Avoidable bias

• If avoidable bias > variance focus on reducing bias.

• If avoidable bias < variance focus on reducing variance.
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Bias Variance Analysis: Avoidable bias

Consider image classi�cation problem with the following
performance (classi�cation error).

scenario A scenario B

Human 1% 7.5%

Training performance 8% 8%

Dev performance 10% 10%

What technique should we use to improve performance in
scenario A and B ?
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Quantify human level performance

Consider x-ray image classi�cation: suppose

a Typical human achieve 3%

b Typical doctor achieve 1%

c Experienced doctor achieve 0.7%

d Team of experienced doctors achieve 0.5%

What is human level error ?
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Quantify human level performance

Human level performance {1, 0.7, 0.5}

scenario A scenario B scenario C

Training performance 5% 1% 0.7%

Dev performance 6% 5% 0.8%
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Quantify human level performance

Scenario A:

• Avoidable bias is between 4− 4.5% and the variance is 1%
→ focus on bias reduction techniques

• Choice of human-level performance doesn't have an impact.

Scenario B:

• Avoidable bias is between 0− 0.5% and the variance is 4%
→ focus on variance reduction techniques

• Choice of human-level performance doesn't have an impact.

Scenario C:

• The estimate for bayes error has to be 0.5% Avoidable bias
is between 0.2% and the variance is 0.1% → focus on bias
reduction techniques.
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Error Analysis

If the performance of your ML algorithm is still poor compared
to human level performance ⇒ perform error analysis

• Manually examine mistakes that your ML algorithm is
making → gain insight of what to do next.

Error analysis

1 First get about 100 mislabelled dev set samples.

2 Manually examine the samples for false negatives and false positives.

3 Count up the number of error that fall into various di�erent categories.

This will help you prioritize or give you inspiriton for new
direction to go in.
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Error Analysis

Consider a cat vs dog classi�cation problem:

• Your team achieve 90% accuracy
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Cleaning incorrectly labelled data in training set

In supervised ML the data comprises input X and label Y

• What if you going through the data and �nd some of the
labels are incorrect.

• What should you do?
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Cleaning incorrectly labelled data in training set

If the errors (incorrectly labelled example) are random → leave
the errors as they are not spend time correcting them

• This is because deep learning are robust to random errors.

However, deep learning are less robust to systematic errors ⇒
constantly labels white dogs as cats
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Cleaning incorrectly labelled data in dev/test set
To address the impact of incorrectly label in dev/test set:

• Add extra column for incorrectly label during error analysis

• If your dev set error is 10% and you have 0.5% error here
due to mislabeled dev set ⇒ probably not a very good use
of your time to try to �x them.

• But instead, if you have 2% dev set error and 0.5% error
here is due to mislabeled dev set, ⇒ it is wise to �x them
because it amounts for 25% of your total error.
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Training and testing on di�erent distribution

Suppose you are building an app that classi�es cats from the
images uploaded by users. The images are taken from users cell
phone. Suppose you have data from two sources

1 200,000 high resolution images from the web and

2 10,000 unprofessional/blurry images on the app, uploaded
by users.

Question: What is the best approach to distribute these data
into train/dev/test set?
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Training and testing on di�erent distribution

Question: What is the best approach to distribute these data
into train/dev/test set?

• One approach you can use: combine the dataset and
randomly shu�e them into train/dev/test set.

• Advantage: Your data will come from the same distribution

• Disadvantage: Most of your dev and test data will come
from the web page distribution rather than the actual
mobile phone distribution which you care about.
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Training and testing on di�erent distribution

Question: What is the best approach to distribute these data
into train/dev/test set?

• Best approach: have all images in dev/test set come from
mobile users and put the remaining images from mobile
users in the train set along with the web images.

• For example: Train set 205000 (web plus 5000 mobile data),
dev set 5000 (mobile data) and test set 5000 (mobile data)

• This will cause inconsistent distribution in train and
dev/test set but it will let you hit where you intend to in
the long run.

Take away
• use large training set, even if distribution is di�erent from dev/test set.

• dev/test data should re�ect what to expect from the system.

28



Bias and Variance with mismatched training and dev/test
set

Analysing bias and variance change when your training set come
from di�erent distribution than the your dev/test set.

• You can no longer call the error between train and dev set
as variance ⇒ they are already coming from di�erent
distributions.

• To analyse actual variance de�ne a new Training / Dev set
which will have same distribution as training set but will
not be used for training.
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Bias and Variance with mismatched training and dev/test
set

You can then analyse your model as shown in the �gure below.
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Bias and Variance with mismatched training and dev/test
set

Scenario A B C D E F

Human performance 0% 0% 0% 0% 0% 4%

Training performance 1% 1% 1% 10% 10% 7%

Training-dev performance − 9% 1.5% 11% 11% 10%

Dev performance 10% 10% 10% 12% 20% 6%

Test performance − − − − − 6%

31



Addressing data mismatch

• Perform manual error analysis to understand the error
di�erences between training/dev/test set.

• Collect more training data similar to dev/test set ⇒ you
can use synthetic data.
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Build your system quickly
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Transfer learning

Transfer learning: ML method where a model developed for a
task ( task) is reused as the starting point for a model on a
second task (target task).

• De�ne source and target domain.

• Learn on source domain.

• Generalize on target domain ⇒ Learned knowledge from
source domain applied to a target domain.

• why it work: some low-level features can be shared for
di�erent tasks.
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Transfer learning

When to use transfer learning
• source task and target task have the same input.

• There are lot of data for source task and relatively small amount of
data for target task.

• Low level feature of source task could be helpful for target task.
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Multi-task learning

Multi-task learning: Use a single neural network to do
simultaneously several tasks.

• Suppose you want to build a self-driving car and a part of
the problem is to classify objects on the street.

More details on multi-task learning here
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Multi-task learning

When to use multi-task learning:

• Lower-level features can be shared.

• Similar amount of data for each task → data for other tasks
could help learning of main task.

• Can train a big enough NN to do well on all tasks.
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What is end to end deep learning

A simpli�cation of processing or learning systems into one
neural network.

• Instead of using many di�erent steps and manual feature
engineering to generate a prediction → use one neural
network to �gure out the underlying pattern

• This omit multiple stages in pipeline by a single NN.

• It work well only when have really large dataset.
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What is end to end deep learning
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Whether to use end-to end deep learning

Consider the following two problems:

1 Face recognition from camera

2 Machine translation.
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Whether to use end-to end deep learning

Advantages

• Let the data speak → the neural network will �nd which
statistics are in the data rather than being forced to re�ect
human preconceptions.

• Less hand-designing of components needed → it simpli�es
the design work �ow.

Disadvantages

• Require large amount of labelled data → can not used for
every problem.

• Excludes potentially usefully hand designed component.
• Data and any hand-design's components or features are the
main two sources of knowledge for learning algorithm.

• If the data set is small than hand-design system is a way to
give manual knowledge into the algorithm.
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Important advice

• ML is not plug and play.

• Learn both theory and practical implementation.

• Practice, Practice, Practice: compete in Kaggle
competitions and read associated blog posts and forum
discussions.

• Do the Dirty Work: read a lot of papers and try to
replicate the results. Soon enough, you'll get your own
ideas and build your own models
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