

04/06/2020: Paul Nulty

Natural Language Processing for RegTech

11/06/2020: Quan Le

Machine Learning for Cybersecurity

18/06/2020: Claudia Mazo Vargas

Medical images analysis and machine learning

25/06/2020: Anthony Faustine

Machine Learning for Electric Power Consumption Data

'making the possible real'

02/07/2020: Wael Rashwan

Computational Modelling and Simulation for Spreading of Epidemics

09/07/2020: Susan McKeever

Key developments in machine learning

16/07/2020: Robert Ross

Intelligent Conversational Interfaces

23/07/2020: Inder Preet

Hardware for Machine Learning

SUPERMARKET

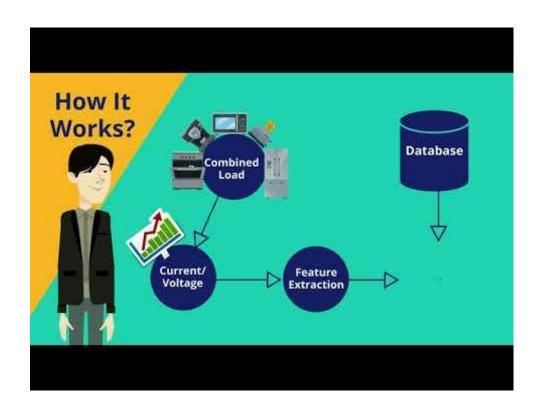
*** SHOPPING BILL ***

Aa Bb Cc Dd Ee 3.99
Ff Gg Hh Ii Jj 8.85
Kk Ll Mm Nn Oo 2.14
Pp Qq Rr Ss Tt 0.58
Uu VV Ww Xx Yy 7.26
Zz \$£ %: += @! 3.07

Total:

25.89

YOUR BILL (FRONT)



Your last bill	€200.00	
Payments / Transactions	€200.00 cr	(11)
Balance Brought Forward	€0.00	12
Charges for this period	€197.84	13
VAT	€26.71	
Total due	€224.55	14

Robust Machine Learning for Appliance Recognition in Non-Intrusive Power Monitoring

Anthony Faustine

What is NILM

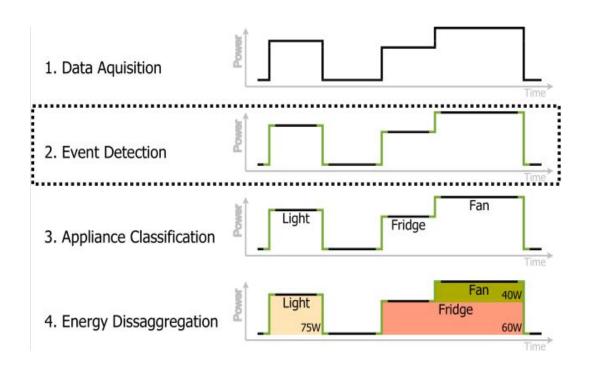
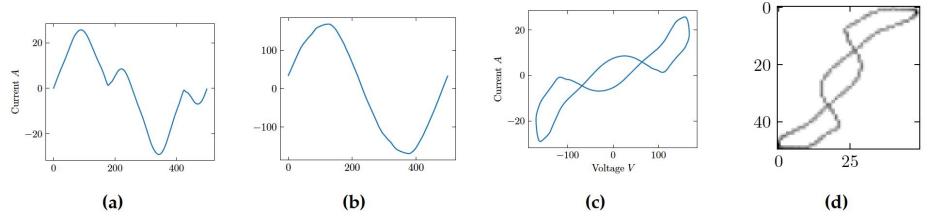

NILM: Event vs Non-Event

Figure 1. Typical NILM framework [8].

disaggregate appliances by means of detecting and classifying their individual transitions in the aggregated signal. High frequency Hybrid approach Mon-event based match each sample of the aggregated signal to the consumption of one or more appliances Low frequency HMM and Deep-learning appraaches

NILM Event based



NILM: Appliance recognition

Identify active appliances from aggregate signal

- A challenging problem in buildings with multiple loads.
- Performance of the existing approaches is yet unsatisfactory.
- Appliance feature (signature) is an important performance factor.

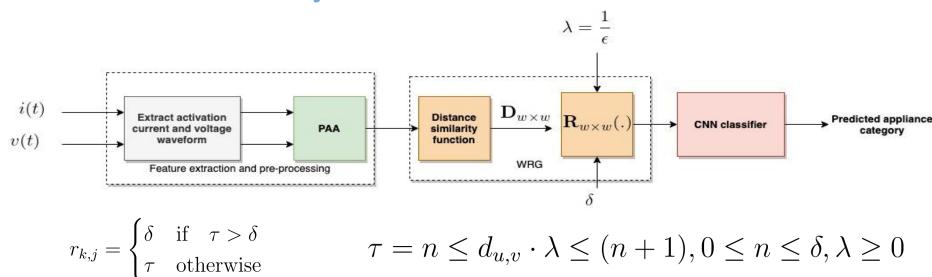

Appliance recognition: V-I Appliance feature

Figure 5. Generation of V-I image from Microwave activation current and voltage in the PLAID dataset (a) Activation current (b) Activation voltage (c) V-I trajectory d) Generated V-I image.

De Baets, L.; Ruyssinck, J.; Develder, C.; Dhaene, T.; Deschrijver, D. **Appliance classification using V-I** trajectories and convolutional neural networks. ENERGY AND BUILDINGS 2018, 158, 32–36.

Proposed Method-1: Apply compressed distance-similarity matrix

Anthony Faustine *, Lucas Pereira, *Improved Appliance Classification in Non-Intrusive Load Monitoring using Weighted Recurrence Plots and Convolutional Neural Networks*. Accepted for publication MDPI-Energies Journal

Robust Machine Learning for Appliance Recognition in Non-Intrusive Power Load Monitoring

Anthony Faustine

sambaiga@gmail.com

sambaiga.github.io/sambaiga

Research interest: AI4Sustainability, Deep learning, Statistical Learning