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Robust Machine Learning for Appliance
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http://www.youtube.com/watch?v=r03ar19NcN4

NILM: Event vs Non-Event

- - | ‘ -

Single point Low, Middle & High-frequency Supervised or
sensing hardware Steady vs. Transient State Unsupervised Learning

Figure 1. Typical NILM framework [8].

Event-based

Non-event based

e disaggregate appliances by means of
detecting and classifying their individual
transitions in the aggregated signal.

e High frequency

e Hybrid approach

e match each sample of the aggregated
signal to the consump-ion of one or
more appliances

e Low frequency

e HMM and Deep-learning appraoches




NILM Event based

1. Data Aquisition || a
: 2. Event Detection o g
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|dentify from aggregate signal

e A challenging problem in buildings with

e Performance of the existing approaches is yet
unsatisfactory.

e Appliance IS an important
performance factor.
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Appliance recognition: V-I Appliance feature
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Figure 5. Generation of V-] image from Microwave activation current and voltage in the PLAID dataset
(a) Activation current (b) Activation voltage (c) V-I trajectory d) Generated V-I image.

De Baets, L.; Ruyssinck, J.; Develder, C.; Dhaene, T.; Deschrijver, D. Appliance classification using V-1

trajectories and convolutional neural networks. ENERGY AND BUILDINGS 2018, 158, 32—36.



Proposed Method-1: Apply compressed
distance-similarity matrix
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Anthony Faustine *, Lucas Pereira, Improved Appliance Classification in Non-Intrusive Load Monitoring

using Weighted Recurrence Plots and Convolutional Neural Networks. Accepted for publication
MDPI-Energies Journal



Robust Machine Learning for Appliance
Recognition in Non-Intrusive Power Load
Monitoring

Anthony Faustine
sambaiga@gmail.com
sambaiga.qgithub.io/sambaiga

Research interest: Al4Sustainability, Deep learning,
Statistical Learning



mailto:sambaiga@gmail.com

