
Deep Learning For Computer Vision

Anthony Faustine

Datascientist
(CeADER)

Thursday 2nd July, 2020

1



Learning goal

• Understand how to build and train Convolution Neural
Networks (CNN).
• Learn how to apply CNN to to visual detection and

recognition tasks.
• Learn how to apply Transfer learning with image and

language data.
• Understand how to implement Convolution Neural Network

using Pytorch framework.

2



Outline

3



Introduction: MLP Limitations

So far we have learned MLP as a universal function
approximator which can be used for classification or regression
problem.
• They build up complex pattern from simple pattern

hierachically.
• Each layer learn to detect simple combination of pattern

detected by previous layer.
• The lowest layers of the model capture simple patterns

where the next layers capture more complex pattern.

3



Introduction: MLP Limitations

Consider the following three problems.

Problem 1: Given speach signal below

Task: Detect if the signal contain the word HAPA KAZI TU

4



Introduction: MLP Limitations

Consider the following three problems.

Problem 2: Given following image

Task: Idenify zebra in the image

5



Introduction: MLP Limitations

Consider the following three problems.

Problem 2: Given following two images.

(a) Image 1 (b) Image 2

Figure 1: Zebra

Task: Classify the image as zebra regardless of the orientation of
zebra in the image.

6



Introduction: MLP Limitations

Composing MLP for these kind of problems is very challenging.
1 Require a very large network

2 MLPs are sensitive to the location of the pattern
• Moving it by one component results in an entirely different

input that the MLP wont recognize.

In many problems the location of a pattern is not important
• Only the presence of the pattern.
• Requirement: Network must be shift invariant.

More details

7

http://deeplearning.cs.cmu.edu/slides/lec9.cnn.pdf


Outline

8



Convolutioanl Neural Network (CNN)

Neural networks for visual data are designed specifically for such
problems:
• Handle very high input dimension
• Exploit the 2D topology of image or 3D topology for video data.
• Build in invariance to certain variations we expect (translations,

illumination etc)

8



Convolutional Neural Networks (CNN)

CNN are specialized kind of neural networks for processing
visual data.
• They employs a mathematical operation called convolution in place of

general matrix multiplication in at least one of their layers.
• CNNs are often used for 2D or 3D data (such as grayscale or RGB

images), but can also be applied to several other types of input, such
as:

1 1D data: time-series, raw waveforms
2 2D data: grayscale images, spectrograms
3 3D data: RGB images, multichannel spectrograms

9



Convolutional Neural Networks (CNN)

Convolution leverages three important ideas that help improve a
machine learning system.

1 Sparse interactions (local connectivity),
2 Parameter sharing,
3 Equivariant representations

10



CNN: Local connectivity

Unlike MLP, a feature at any given CNN layer only depends on
a subset of the input of that layer.
• Each hidden unit is connected

only to the subregion of the
input image.

• This reduce the number of
parameter.

• Reduce the cost of computing
linear activations of the hidden
units.

Figure 2: Local connectivity: credit:
Prof. Seungchul Lee

11



CNN: Parameter Sharing

At each CNN layer, we learn several small filters (feature maps)
and apply them to the entire layer input.
• Units organized into the same

feature map share parameters.
• Hidden units within a feature

map cover different positions in
the image.

• Allow feature to be detected
regardless of their position.

Figure 3: Parameter sharing: credit:
Hugo Larochelle

12



CNN: Equivariant representations

A feature map (filter) that detects e.g. an eye can detect an eye
everywhere on an image (translation invariance)
• Units organized into the same

feature map share parameters.
• Hidden units within a feature

map cover different positions in
the image.

• Allow feature to be detected
regardless of their position.

Figure 4: credit: Hugo Larochelle

13



CNN Architecture

A typical layer of a convolutional network consists of three
layers:
• Convolutional layer
• Detector stage
• Pooling layer and
• Fully connected layer

14



CNN Architecture: Convolutional layer
This is the first layer in CNN and consist of set of independent
filters that can be sought as feature extractor.

• The result is obtained by taking the dot product between the filter w
and the small 3× 3× 1 chunck of the image x plus bias term b as the
filter slides along the image.

wTx+ b

• The step size of slide is called stride ⇒ controls how the filter
convolves around the input volume.

Demo
15

https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/full_padding_no_strides_transposed.gif


CNN Architecture: Convolutional layer

Consider more two filters

• If we have three filters of size 3× 3× 1 we get 3 separate activation
maps stacked up to get a new volume of size 5× 5× 3

16



CNN Architecture: Convolutional operations

Figure 5: Conv operation

credit: Adam Gibson and Josh Patterson

17



CNN Architecture: Padding

Consider the following 7× 7× 1 images convolved with 3× 3× 1
filter and stride size of 1.

• If the size of image is N ×N , and that of filter is F × F and S is the
stride size S.

• The size of the feature map (output size) is N−F
S

+ 1

• For above image: N = 7, F = 3

18



CNN Architecture: Padding

Consider the following 7× 7× 1 images convolved with 3× 3× 1
filter and stride size of 1.

For above image: N = 7, F = 3
• Stride 1 S = 1,⇒ 7−3

1
+ 1 = 5

• Stride 2 S = 2,⇒ 7−3
2

+ 1 = 3

• Stride 3 S = 3,⇒ 7−3
3

+ 1 = 2.33 Does not fit

19



CNN layers: Padding
For above image: N = 7, F = 3

Stride 3 S = 3,⇒ 7−3
3 + 1 = 2.33 Does not fit

• To address this we pad the input
with suitable values (padding
with zero is common)⇒ to
preserve the spatial size.

• In general common to see
convolutional layers with stride
1, filter F × F and zero padding
with P = F−1

2

F = 3⇒ zero pad with P = 1

F = 5⇒ zero pad with P = 2

F = 7⇒ zero pad with P = 3

20



CNN layers: Hyper-parameters

To summarize the conv layer
• Accepts a volume of size
W1 ×H1 ×D1

• Requires four hype-parameters:
1 Number of filters K.
2 Spatial extent of filter F .
3 Amount zero padding P .

Common settings:
• K =

(power of 2 e.g) 4, 8, 16, 32, 64, 128

• F = 3, S = 1, P = 1

• F = 5, S = 1, P = 2

• F = 5, S = 2, P =? whatever fits.
• Produce a volume of size W2 ×H2 ×D2 where

W2 = (W1 − F + 2P )/S + 1

H2 = (H1 − F + 2P )/S + 1

D2 = K

• The number of weights per filter is F · F ·D1 and the total number of
parameters is (F · F ·D1) ·K and K biases.

21



CNN layers: Hyper-parameters

To summarize the conv layer
• Accepts a volume of size
W1 ×H1 ×D1

• Requires four hype-parameters:
1 Number of filters K.
2 Spatial extent of filter F .
3 Amount zero padding P .

Common settings:
• K =

(power of 2 e.g) 4, 8, 16, 32, 64, 128

• F = 3, S = 1, P = 1

• F = 5, S = 1, P = 2

• F = 5, S = 2, P =? whatever fits.
• Produce a volume of size W2 ×H2 ×D2 where

W2 = (W1 − F + 2P )/S + 1

H2 = (H1 − F + 2P )/S + 1

D2 = K

• The number of weights per filter is F · F ·D1 and the total number of
parameters is (F · F ·D1) ·K and K biases.

21



CNN layers: Pytorch Implementation

torch.nn.Conv2d(inchannels, outchannels, kernelsize, stride =
1, padding = 0)

• in_channels (int) – Number of channels in the input image
• out_channels (int) – Number of channels produced by the convolution
• kernel_size (int or tuple) – Size of the convolving kernel
• stride (int or tuple, optional) – Stride of the convolution. Default: 1
• padding (int or tuple, optional) – Zero-padding added to both sides of the

input.

22



CNN Architecture: Detection layer

In this stage each feature map of a conv layer is run through a
non-linear function.
• ReLU function is often used after every convolution operation.
• It replace all the negative pixel in the feature map by zero.

23



CNN Architecture: Pooling layer

A pooling layer act as down-sampling filter ⇒ takes each feature
map from a convolution layer produce a condensed feature map.
• Make representation smaller and more manageable.
• Operates over each activation map independently

• Reduce computational cost and the amount of parameter.
• Preserve spatial invariance.

24



CNN Architecture: Pooling layer

Max Pooling

Figure 6: Max pooling (credit: CS231n Stanford University)

• Other pooling functions: average pooling or L2-norm pooling.

25



CNN Architecture: Pooling layer

To summarize the pooling layer.
• Accepts a volume of size
W1 ×H1 ×D1

• Requires two hype-parameters:
1 Spatial extent of filter F .
2 Stride S.

Common settings:
• F = 2, S = 2

• F = 3, S = 2

• Produce a volume of size W2 ×H2 ×D2 where

W2 = (W1 − F )/S + 1

H2 = (H1 − F )/S + 1

D2 = D1

• Introduce zero parameters since it computes fixed function of input.
• Not common to use zero-padding for pooling layers.

26



CNN Architecture: Pooling layer

To summarize the pooling layer.
• Accepts a volume of size
W1 ×H1 ×D1

• Requires two hype-parameters:
1 Spatial extent of filter F .
2 Stride S.

Common settings:
• F = 2, S = 2

• F = 3, S = 2

• Produce a volume of size W2 ×H2 ×D2 where

W2 = (W1 − F )/S + 1

H2 = (H1 − F )/S + 1

D2 = D1

• Introduce zero parameters since it computes fixed function of input.
• Not common to use zero-padding for pooling layers.

26



Pooling layer: Pytorch Implementation

torch.nn.MaxPool2d(kernelsize, stride)
• kernel_size (int or tuple) – Size of the convolving kernel
• stride (int or tuple, optional) – Stride of the convolution. Default: 1

27



Convolutional Architecture: Fully connected layer
In the end it is common to add one or more fully connected
(FC) layer.
• Contains neuron that connect the entire input volume as in

MLP.

Figure 7: credit: Arden Dertat

28



Convolutional Architecture

class CNN(nn.Module): def
init

(self):super(CNN,self).
init

()self.conv1=nn.Conv2d(3,6,5)self.conv2=nn.Conv2d(6,16,5)self.mp=nn.MaxPool2d(2,2)self.fc1=nn.Linear(16∗53∗53,120)self.fc2=nn.Linear(120,10)

def forward(self, x):
insize = x.shape[0]out = F.relu(self.conv1(x))out = self.mp(out)out =

F.relu(self.conv2(out))out = self.mp(out)out = out.view(insize,−1)out =
F.relu(self.fc1(out))out = self.fc2(out)returnout

29



Convolutional Architecture

class CNN(nn.Module): def
init

(self):super(CNN,self).
init

()self.conv1=nn.Conv2d(3,6,5)self.conv2=nn.Conv2d(6,16,5)self.mp=nn.MaxPool2d(2,2)self.fc1=nn.Linear(16∗53∗53,120)self.fc2=nn.Linear(120,10)

def forward(self, x):
insize = x.shape[0]out = F.relu(self.conv1(x))out = self.mp(out)out =

F.relu(self.conv2(out))out = self.mp(out)out = out.view(insize,−1)out =
F.relu(self.fc1(out))out = self.fc2(out)returnout

29



Outline

30



CNN applications: Image classification

Image Classification: Classify an image to a specific class.
• The whole image represents

one class.
• We don’t want to know exactly

where are the object → only
one object is presented.

The standard performance
measures are:
• The error rate P (f(x; θ) 6= y)

or accuracy P (f(x; θ) = y)

• The balanced error rate (BER)
1
K

∑K
i=1 P (f(x; θ) 6= yi|y = yi)

30



CNN applications: Image classification

In the two-class case we can use True Positive (TP) and False
Postive (FP) rate as:
• TP = P (f(x; θ) = 1|y = 1)

and
FP = P (f(x; θ) = 1|y) = 0

• The ideal algorithm would
have TP ' 1 and FP ' 0

Other standard performance
representation:
• Receiver operating

characteristic (ROC)
• Area under the curve AUC)

Figure 8: credit:Stanford CS 229:
Machine Learning

31

https://web.stanford.edu/~kalouche/cs229.html
https://web.stanford.edu/~kalouche/cs229.html


CNN applications: Classification with localization

Image classification with localization: aims at predicting classes
and locations of targets in an image.
• Learn to detect a class and a

rectangle of where that object
is.

A standard performance
assessment considers
• a predicted bounding box B̂ is

correct if there is an annotated
bounding box B̂ for that class:
such that the Intersection over
Union (IoU) is large enough.

area(B ∩ B̂)

area(B ∪ B̂)
≥ 1

2

32



CNN applications: Object detection

Given an image we want to detect all the object in the image
that belong to a specific classes and give their location.
• An image may can contain more than one object with different classes.

33



CNN applications: Image segmentation
Image segmentation: consists of labeling individual pixels with
the class of the object it belongs to ⇒ It may also involve
predicting the instance it belongs to.

Two types
1 Semantic Segmentation: Label each pixel in the image with a

category label.
2 Instance Segmentation: Label each pixel in the image with a category

label and distinguish them.

34



Outline

35



Deep Convolutional Architecture

Several deep CNN architecture that works well in several tasks
have been proposed.
• LeNet-5
• AlexNet
• VGG
• ResNet
• Inception

35



Outline

36



Transfer learning

Transfer learning: The ability to apply knowledge learned in
previous tasks to novel tasks.

• Based on human learning. People can often transfer knowledge learnt
previously to novel situations.

Figure 9: credit: Romon Morros

36



Transfer learning

Transfer learning Idea: Instead of training a deep network from
scratch for your task:

• Take a network trained on a different domain for a different source
task.

• Adapt it for your domain and your target task.
• A popular approach in computer vision and natural language

processing task.

37



Why Transfer learning

• In practice, very few people train an entire CNN from scratch (with
random initialization) ⇒ (computation time and data availability)

• Very Deep Networks are expensive to train.For example, training
ResNet18 for 30 epochs in 4 NVIDIA K80 GPU took us 3 days.

• Determining the topology/flavour/training method/hyper parameters
for deep learning is a black art with not much theory to guide you.

38



References I

• Deep learning for Artificial Intelligence master course:
TelecomBCN Bercelona(winter 2017)
• 6.S191 Introduction to Deep Learning: MIT 2018.
• Deep learning Specilization by Andrew Ng: Coursera
• Introductucion to Deep learning: CMU 2018
• Cs231n: Convolution Neural Network for Visual

Recognition: Stanford 2018
• Deep learning in Pytorch, Francois Fleurent: EPFL 2018

39

https://telecombcn-dl.github.io/2017-dlai/
https://telecombcn-dl.github.io/2017-dlai/
introtodeeplearning.com
https://www.coursera.org/specializations/deep-learning
http://deeplearning.cs.cmu.edu/
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
http://fleuret.org/amld

