Foundation of Deep Learning

Anthony Faustine

Datascientist
(CeADER)

Friday 26%" June, 2020

Learning goal

® Understand the basic building block of deep learning model.
® Learn how to train deep learning models.

® Learn different techniques used in practise to train deep
learning models.

® Understand different modern deep learning architectures
and their application.

e Explore opportunities and research direction in deep
learning.

Outline

What is Deep Learning

Deep Learning a subclass of machine learning algorithms that learn

underlying features in data using multiple processing layers with multiple
levels of abstarction.

Machine Learning

e

Input Feature extraction Cl.assmcatlon Qutput
Deep Learning
G520 e
—r —
@
Input Feature extraction + Classification Output

Figure 1: ML vs Deep learning: credit:

Deep Learning Success
Automatic Colorization

Lightness

Input: Grayscale Image Output: Color Image

Figure 2: Automatic colorization

Object Classification and
Detection

Instance
Segmentation

Classification
+ Localization

Classification Object Detection

o

CAT,DOG, DUCK CAT, DOG, DUCK

Single object Multiple objects

Figure 3: Object recognition

Image Captioning

‘construction worker in orange
safety vest is working on road

man in black shirt is playing “two young gils are playing with

Image Style Transfer

L

|

4

https://fstoppers.com/science/deep-learning-algorithm-automatically-colorizes-photos-138500
https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://towardsdatascience.com/image-captioning-in-deep-learning-9cd23fb4d8d2
https://dmitryulyanov.github.io/feed-forward-neural-doodle/

Deep Learning Success

Self driving car

Recorded

steering
wheel angle | Adjust for shift
and rotation
Left camera
p— N
Center camera %1 Random shift

+| and rotation

Right camera

Game

Desired steering command

Network
computed
steering
command

CNN >

A

Back propagation |, Eor
weight adjustment

(o)

https://devblogs.nvidia.com/deep-learning-self-driving-cars/
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://newatlas.com/nvidia-camera-based-learning-navigation/50036/
http://news.mit.edu/2016/ai-system-predicts-85-percent-cyber-attacks-using-input-human-experts-0418

Deep Learning Success

Machine translation Speach Processing

Se:

regated
speech

Automatic Text Generation Music composition

Sliments| Feveal iot-specific elevisions can bel used to secretly record conversations .

The Doutlace (v2)

Griminals| Who initiated the attack managed to commandeer a large number of interet-conne

38 in current use . N) —_—

>cuments revealed that microwave ovens can spy on you - maybe if you personally don't si § = =

1quences of the sub-par security of the iot . f— —

1o

ik aahas v
can 0y 1 ou - e sho

o

o e yoursel vt you
oy on e n conscncen o
Sy came undo n tock Pt

https://arxiv.org/abs/1609.08144
https://www.theverge.com/2017/5/14/15637588/salesforce-algorithm-automatically-summarizes-text-machine-learning-ai
https://news.developer.nvidia.com/reinventing-the-hearing-aid-with-deep-learning/
https://highnoongmt.wordpress.com/2015/08/11/deep-learning-for-assisting-the-process-of-music-composition-part-1/

Deep Learning Success

Pneumonia Detection on

Chest X-Rays

Computational biology

Pedict heart disease risk from
eye scans

Image of retina

More stories

https://arxiv.org/abs/1711.05225
https://arxiv.org/abs/1711.05225
https://www.nature.com/articles/s41551-018-0195-0.epdf?referrer_access_token=KeJIF4KduBHwtDObF4WWHdRgN0jAjWel9jnR3ZoTv0OMsbBDq-7d5VZef-dAA8S42ksrZ1yBZ3WBQt5pZ416cy7NQGq1FbJJy0uOTxIoC3CU8nn8fmT-RTRVz8SQRPFLm0cYdoImE_dKVIAFZ7b8nkt2psCXq84UXbc6hD3LdmhhYeg_IXJ76pHskPiwglJrfb2pbHKNRbxLRTEINRQEArNZz-Zp76__1cHbFgJzp1GZGQVDUHtU4LZPY1svcOJ0xLYVA0-iUv1GHLn9vwhFOtavgKQyaR29szwlL61RwW7KNd1S37NSElCvasUmsWlG&tracking_referrer=www.theverge.com
https://www.nature.com/articles/s41551-018-0195-0.epdf?referrer_access_token=KeJIF4KduBHwtDObF4WWHdRgN0jAjWel9jnR3ZoTv0OMsbBDq-7d5VZef-dAA8S42ksrZ1yBZ3WBQt5pZ416cy7NQGq1FbJJy0uOTxIoC3CU8nn8fmT-RTRVz8SQRPFLm0cYdoImE_dKVIAFZ7b8nkt2psCXq84UXbc6hD3LdmhhYeg_IXJ76pHskPiwglJrfb2pbHKNRbxLRTEINRQEArNZz-Zp76__1cHbFgJzp1GZGQVDUHtU4LZPY1svcOJ0xLYVA0-iUv1GHLn9vwhFOtavgKQyaR29szwlL61RwW7KNd1S37NSElCvasUmsWlG&tracking_referrer=www.theverge.com
http://msb.embopress.org/content/12/7/878
https://www.extremetech.com/extreme/243352-deep-learning-algorithm-diagnoses-skin-cancer-seasoned-dermatologists
https://www.nvidia.com/en-us/deep-learning-ai/customer-stories/

Why Deep Learning and why now?

Why deep learning: Hand-Engineered Features vs. Learned

features.
Traditional ML Deep learning

® Use enginered feature to ® Automatically discover and
extract useful patterns from extract useful pattern from
data. data.

® Complex and difficult since ® Allows learning complex
different data sets require features e.g speach and
different feature engineering complex networks.

approach

Why Deep Learning and why now?

Why Now?

Big data availability
® Large datasets
® Easier collection and storage
Increase in computaional power
® Modern GPU architecture.
Improved techniques
® Five decades of research in machine learning.
Open source tools and models
® Tensorflow.
® Pytorch

® Keras

Outline

10

The Perceptron

A perceptron is a simple model of a neuron.

b

r1 — W1 u

w2 4> g9(-) (4]
T2 =

Y
Ln

The output: § = f(x) = g(z(x)) where

e 1.y input, output. ® activation function: g(.)
® w,b weight and bias ® pre-activation:
parameter 6 z(x) =Y 1w+ b

Perceptron

11

The Perceptron: Activation Function

Why Activation Functions?

e Activation functions add non-linearity properties to neuro
network function.

® Most real-world problems + data are non-linear.

e Activation function need to be differentiable.

Sigmoid

TanH

RelU

8 _ [0 for z<0
f(z)_{z for >0

0.2
6

Figure 4: Activation function credit:kdnuggets.com

12

Multilayer Perceptrons (MLP)

We can connect lots perceptron units together into a directed
acyclic graph.

(1) (k) (k+1)

(O —la N ie) ey .
e ‘{@H O ~@» ® ﬂ@ O (o) i
O w5 w® O w® O e
@20~ O 0~ ~(s0)~O ~o0) 5
e eep
O =80)~10 (4O (40~ O ~00)} G
h h(2) h(k) Output
Input layer k Hidden | Output layers
L iaaen layers J

.

13

Multilayer Perceptrons (MLP)

(87O ~(00)——{71]
wF) wik+D)
@ 70\ 7B\ -
(6010 00—z
(50O (00} ———{Gid
1y ZHD) =
h® ouput

Input layer Output layers
. k Hidden layers J
s

® Consists of L multiple layers (l1,l2...11) of pecepron, interconnected
in a feed-forward way.

® The first layer [; is called the input layer = just pass the information
to the next layer.

® The last layer is the ouput layer = maps to the desired output format.

® The intermediate k layers are hidden layers = perform computations
and transfer the weights from the input layer.

14

Multilayer Perceptrons (MLP)

(k) pk+1)
(s0)~ O

~ 1o

w
[z2—0 (a0 ©

~ o
(s0)~2 (st o)

k+1)y—

R CES oupu

Input layer Output layers
. K Hidden layers)
d

Hidden layer 1
® Activation
bW (x) = g(z) (x))
® Pre-activation: = g(bM + wM(x))

® Input:

x = {z1,22,...24} € REXN)

(1) —p® (1)
z- (x) +wi(x) ® Pre-activation

where z(z); = 3, wg}j)xj + bgl) 2@ (x) = b®? 4 wnh(x)

Multilayer Perceptrons (MLP)

Input layer

K Hidden layers
T

\b“’* 1)

"g(} D01
w®

(D N i
\i}) b2
p

(st) Ut

tput
Output layers Outpu

Hidden layer 2

® Activation

h® (x) = g(z? (x))
=g(m® 4+ w@nM (x))

® Pre-activation

23 (x) = b® 4+ wh®@)(x)

Hidden layer k

® Activation

h®)(x) = g(z™ (x))
= g(b® 4 wpk-—1)(x))

® Pre-activation

25D (x) = bFD) 4 &R (i)

16

Multilayer Perceptrons (MLP)

b(1) \b(k)‘
oﬂ\’> é@ o)
(@) w‘@ w® | ©
[z2—O {(»)/, (90) .
o = ~ 1o
/) -
O g0 o) 2
200 2@ 2

Input layer
R K Hidden layers
T

blk+1)

tput
Output layers Outpu

Output layer

® Activation
h) (x) = 0(z) (x))
= O(bH1) 4 wkt DK (%))
=y

where O(.) is output activation
function

Output activation function

® Binary classification:
y € {0,1} = sigmoid

® Multiclass classfiction:y €
{0, K — 1} = softmaxz

® Regression: y € R™ = identity
sometime RELU.

Demo Playground

17

http://playground.tensorflow.org

MLP: Pytorch

import torch model = torch.nn.Sequential(torch.nn.Linear(2,
16), torch.nn.ReLU(), torch.nn.Linear(16, 64), torch.nn.ReLU(),
torch.nn.Linear(64, 1024), torch.nn.ReLU(),
torch.nn.Linear(1024, 1), torch.nn.Sigmoid())

18

MLP: Pytorch

import torch from torch.nn import functional as F
class MLP(torch.nn.Module): def

it self): MLP,self).. p;
(%€)zsuper(wself) ln1t<)self.fcl:to’rch.nn.Linear(2,16)self.f52:t0'rch.nn.Linear(16,64)4

def forward(self, x): x = F.relu(self.fcl(x)) x =
F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) out =
F.sigmoid(self.out(x))
return x

model = MLP()

19

Outline

Training Deep neural networks

To train DNN we need:

® Define loss function:

L(f(x - 6),y)

® A procedure to compute gradient %

® Solve optimisation problem.

Training Deep neural networks: Define loss function

The type of Loss function is determined by the output layer of
MLP.

Binary classification
Output
® Predict y € {0,1}

® Use sigmoid o(.) activation function.

1

:1 = —
p(y = 1|z) e

Loss

® Binary cross entropy.

L(g,y) = ylogy — (1 — y)log(1 —7)

® pythontorch.nn.BCELoss()

21

Training Deep neural networks: Define loss function

Mutli class classification
Output
® Predict y € {1,k}

® Use softmax o(.) activation function.

ply = ilz) =

Loss

® Cross entropy.

22

Training Deep neural networks: Define loss function

Output

® Predict y € R"

® Use identity activation function and sometime RelLU activation.
Loss

® Squared error loss.

® pythontorch.nn.MSELoss()

23

Training Deep neural networks: Compute Gradients

Backpropagation: a procedure that is used to compute gradients

of a loss function.

® [t is based on the application of the chain rule and
computationally proceeds ’backwards’.

Forwardpass

Backwardpass

dL _ dLd:
de = dz dz

dy = dz dy

Figure 5: Back propagation: credit: Flair of Machine Learnin

24

https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html

Training Deep neural networks: Backpropagation
Consider a following single hidden layer MLP.
b

X2z h y——J
e

Forward path

z=w'x+b?!

. 8dy AR AR
h = g(z) We need to find: D’ 260 Hw(D

9Jg
y:W2h+b2 and 262

1
Jo=-|ly - ¥l?
0 2Hy yll

Training Deep neural networks: Backpropagation

Back ward path

v aA
X2 h y ——Jy
e

26

Training Deep neural networks: Backpropagation

Back ward path
03, 0] 03y
b2 oy
y ——J

N
h

< 8.]9

&) ow(2) @

y = w?h +b?
03, 9y 03y 1)
Iw® ow® 0y =h"-|ly -yl
M = 0y 3]
@ gp® gy Y Y

X Z

N

27

Training Deep neural networks: Backpropagation

Back ward path

b® 8.]9 6.]9 b® aJ@
2 oh ob®2) oy
X ‘\Z/‘ % 8-]9 y @

y = w’h + b?
h = g(z)

dJg dy 0J

b ~on oy ~ Wy -9l

9y _Oh 9Jp _ /((z))-%

oz 0z oh 7 oh

28

Training Deep neural networks: Backpropagation

Back ward path

ay@

8%1(3 g 03, V) OJg
- Y h ob(2)
x (> Oh y
- 28 PR ¥ 0y ar
WG oW
z=w'h+b!
Jg 0z 0Ty T 0Jg
ow) owD) 9z 0z
03 _ 0 a3y _ 0%
obM obM) 9z 0z

29

Training Neural Networks: Solving optimisation problem

Objective: Find parameters 6 : w and b that minimize the cost
function:

1))
il (@) . (@)
arg max ;af(x 10),y)

Figure 6: Visualizing the loss landscape of neural nets: credit: Hao Li

30

Training Neural Networks: Gradient Descent

Gradient Descent

@ Initilize parameter 6,
® Loop until converge

@ Compute gradient:
0Jy

00

® Update parameters:

9t+1 _ et _

® Retrn parameter 0

0Js

00

Limitation: Take time to compute

31

Training Neural Networks: Stochastic Gradient Descent

(SGD)

SGD consists of updating the model parameters 6 after every
sample.

SGD

Initialize 6 randomly.

For each training example:
8]19

® Compute gradients:

® Update parameters 6 w1th update rule:

t+1) _ oty OJie
0 =0 a—ae

Stop when reaching criterion

Easy to compute a 2 but very noise.

32

Training Neural Networks: Mini-batch SGD training

Make update based on a min-batch B of example instead of
single example

Mini-batch SGD

@ Initialize randomly.

@® For each mini-batch B:

* Compute gradients: %% = LS5 | a‘]’““’)

® Update parameters 6 W1th update rule
p+1) .— g(t) _ a%

® Stop when reaching criterion

8J,€(9)

Fast to compute aJ" =5 Zk 1 and much better estimate of the true

gradient.

Standard procedure for training deep learning.

33

Training Neural Networks: Gradient Descent Issues

Setting the learning rate «

® Small learning rate: Converges slowly and gets stuck in false local
minima.
® [arge learning rate: Overshoot became unstable and diverge.

® Stable learning rate: Converges smoothly and avoid local minima.

How to deal with this 7

@ Try lots of different learning rates and see what works for
you.
® Jeremy propose a technique to find stable learning rate

® Use an adaptive learning rate that adapts to the landscape
of your loss function.

https://www.youtube.com/watch?v=JNxcznsrRb8&feature=youtu.be&t=4m45s

Training Neural Networks: Adaptive Learning rates
algorithm

® Momentum
® Adagrad

® Adam

® RMSProp

pytorch optimer algorithms

http://pytorch.org/docs/master/optim.html

Outline

Deep learning in Practice: Regularization

Regularization: Technique to help deep learning network
perform better on unsee data.

e (Constraints optimization problem to discourage complex
model.

1 7)
arg max Zﬁ(f(x() 0),y9) +20(0)

® [mprove generalization of deep learning model.

Regularization 1: Dropout
Dropout: Randomly remove hidden unit from a layer during
training step and put them back during test.
® Each hidden unit is set to 0 with probability p.

® Force network to not rely on any hidden node = prevent neural net
from ovefitting (improve performance).

® Any dropout probability can be used but 0.5 usually works well.

a) Standard Neural Net (b) After applying dropout.

w
~

Regularization 1: Dropout

Dropout: in pytorch is implemented as pythontorch.nn.Dropout

If we have a network: model = torch.nn.Sequential(
torch.nn.Linear(1,100), torch.nn.ReLU(),
torch.nn.Linear(100,50), torch.nn.ReLU(),
torch.nn.Linear(50,2))

Regularization 1: Dropout

Dropout: in pytorch is implemented as pythontorch.nn.Dropout

If we have a network: model = torch.nn.Sequential(
torch.nn.Linear(1,100), torch.nn.ReLU(),
torch.nn.Linear(100,50), torch.nn.ReLU(),
torch.nn.Linear(50,2)) We can simply add dropout layers:
model = torch.nn.Sequential(torch.nn.Linear(1,100),
torch.nn.ReLU(), torch.nn.Dropout() torch.nn.Linear(100,50),
torch.nn.RelLU(), torch.nn.Dropout() torch.nn.Linear(50,2))

Note: A model using dropout has to be set in train or eval model.

Regularization 2: Early Stopping

Early Stopping: Stop training before the model overfit.
® Monitor the deep learning training process from overfiting.

® Stop training when validation error increases.

Training Set Accuracy

A
>
o
©
5
g
Overfitting
Test Set Accuracy Early Stopping
Epoch
Epoch

Figure 7: Early stopping: credit: Deeplearning4j.com

Deep learning in Practice: Batch Normalization

Batch normalisation: A technique for improving the
performance and stability of deep neural networks.

Training deep neural network is complicated

® The input of each layer changes as the parameter of the previous layer
change.

® This slow down the training = require low learning rate and careful
parameter initilization.

® Make hard to train models with saturation non-linearity.

® This phenomena is called Covariate shift

40

Deep learning in Practice: Batch Normalization

Batch normalisation: A technique for improving the
performance and stability of deep neural networks.

Training deep neural network is complicated

® The input of each layer changes as the parameter of the previous layer
change.

® This slow down the training = require low learning rate and careful
parameter initilization.

® Make hard to train models with saturation non-linearity.

® This phenomena is called Covariate shift

To address covariate shift = normalise the inputs of each layer for each
mini-batch (Batch normalization)

® To have a mean output activation of zero and standard deviation of
one.

Deep learning in Practice: Batch Normalization

If x1,xs,...xp are the sample in the batch with mean [i; and
variance 62.

® During training batch normalization shift and rescale each component
of the input according to batch statistics to produce output ys:

’y@ L+

where

® © is the Hadamard component-wise product.
® The parameter v and [are the desired moments which are
either fixed or optimized during training.

® As for dropout the model behave differently during training and test.

41

Deep learning in Practice: Batch Normalization

Batch Normalization: in pytorch is implemented as
pythontorch.nn.BatchNorm1d

If we have a network: model = torch.nn.Sequential(
torch.nn.Linear(1,100), torch.nn.ReLU(),
torch.nn.Linear(100,50), torch.nn.ReLU(),
torch.nn.Linear(50,2))

42

Deep learning in Practice: Batch Normalization

Batch Normalization: in pytorch is implemented as
pythontorch.nn.BatchNorm1d

If we have a network: model = torch.nn.Sequential(
torch.nn.Linear(1,100), torch.nn.ReLU(),
torch.nn.Linear(100,50), torch.nn.ReLU(),
torch.nn.Linear(50,2)) We can simply add batch normalization
layers: model = torch.nn.Sequential(torch.nn.Linear(1,100),
torch.nn.ReLU(), torch.nn.BatchNorm1d(100)
torch.nn.Linear(100,50), torch.nn.ReLU(),
torch.nn.BatchNorm1d(50) torch.nn.Linear(50,2)) Note: A model

using batch has to be set in train or eval model.

42

Deep learning in Practice: Batch Normalization

When Applying Batch Normalization

® (Carefully shuffle your sample.
® Learning rate can be greater.
® Dropout is not necessary.

o [? regularization influence should be reduced.

43

Deep learning in Practice: Weight Initilization

Before training the neural network you have to initialize its
parameters.
Set all the initial weights to zero

e Every neuron in the network will computes the same
output = same gradients.

® Not recommended

Deep learning in Practice: Weight Initilization

Random Initilization

® [Initilize your network to behave like zero-mean standard gausian

function.
1
wi~N|p=00= -~

b; =0

where n is the number of inputs.

Deep learning in Practice: Weight Initilization

Random Initilization: Xavier initilization

® Initilize your network to behave like zero-mean standard
gausian function such that

1
wi~N|(p=00=/——m
Nin + Nout

bi=0

where 1, Moyt are the number of units in the previous
layer and the next layer respectively. where n is the number
of inputs.

46

Deep learning in Practice: Weight Initilization

Random Initilization: Kaiming

e Random initilization that take into account ReLU
activation function.

2
wiNN<,LL:0,0: >
n

bi =0

® Recommended in practise.

47

Deep learning in Practice: Pytorch Parameter

Initilization
Consider the previous model: model To apply weight initilization to
= torch.nn.Sequential(nn.linear module.
torch.nn.Linear(1,100),
torch.nn.ReLU(), def weights;nit(m) :
torch.nn.BatchNorm1d(100) ifisinstance(m, nn.Linear) : size =
torch.nn.Linear(100,50), m.weight.size()nout = size[0]n;n =
torch.nn.ReLU(), size[ljvariance = np.sqrt(2.0/(nin +
torch.nn.BatchNorm1d(50) nout))m.weight.data.normal 0.0, variance
torch.nn.Linear(50,2)) model.apply (weights;nit)

48

Outline

Deep learning Architecture: Convolutional Neural
Network

Inpur layer (51) 4 feacure maps

{C1) 4 feature maps (52} 6 feature maps {CZ) 6 feature maps

1 convolution layer | sub-sampling layer | convolution layer | sub-sampling layer | fully connected MLPI

Figure 8: CNN [credit:deeplearning.net]

® Enhances the capabilities of MLLP by inserting convolution layers.

® Composed of many “filters”, which convolve, or slide across the data,
and produce an activation at every slide position

® Suitable for spatial data, object recognition and image analysis.

49

http://deeplearning.net/tutorial/lenet.html

Deep learning Architecture: Recurrent Neural Networks
(RNN)

RNN are neural networks with loops in them, allowing
information to persist.

® ® & & O

9 - oo
& & . b

® (Can model a long time dimension and arbitrary sequence of events
and inputs.

® Suitable for sequenced data analysis: time-series, sentiment analysis,
NLP, language translation, speech recognition etc.

® Common type: LSTM and GRUs.

Deep learning Architecture: Auto-enceoder

Autoenceoder:A neural network where the input is the same as
the output.

Figure 9: credit:Arden Dertat

® They compress the input into a lower-dimensional code and then
reconstruct the output from this representation.

® Tt is an unsupervised ML algorithm similar to PCA.

® Several types exist: Denoising autoencoder, Sparse autoencoder.

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://codeburst.io/deep-learning-types-and-autoencoders-a40ee6754663

Deep learning Architecture: Auto-enceoder

Autoencoder consists of components: encoder, code and
decoder.
® The encoder compresses the input and produces the code,

® The decoder then reconstructs the input only using this code.

. [<E> - m

Input Code Outpuc

Figure 10: credit:Arden Dertat

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

Deep learning Architecture: Deep Generative models

Idea:learn to understand data through generation — replicate
the data distribution that you give it.

® Can be used to generate Musics, Speach, Langauge, Image,
Handwriting, Language

® Suitable for unsupervised learning as they need lesser
labelled data to train.

Two types:

@ Autoregressive models: Deep NADE, PixelRNN,
Pixel CNN, WaveNet, ByteNet

® Latent variable models: VAE, GAN.

https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Outline

54

Limitation

¢ Very data hungry (eg. often millions of examples)

e Computationally intensive to train and deploy (tractably
requires GPUs)

® Poor at representing uncertainty (how do you know what
the model knows?)

e Uninterpretable black boxes, difficult to trust

e Difficult to optimize: non-convex, choice of architecture,
learning parameters

® Often require expert knowledge to design, fine tune
architectures

Research Direction

® Transfer learning.

® Unsepervised machine learning.

e Computational efficiency.

® Add more reasoning (uncertatinity) abilities = Bayesian
Deep learning

® Many applications which are under-explored especially in
developing countries.

ot
ot

Python Deep learning libraries

Tensorflow Pytorch Edward

4+ PYTORCH

TensorFlow Keras

Theano MXNET

https://www.tensorflow.org/
http://deeplearning.net/software/theano/
http://pytorch.org/
https://keras.io/
http://edwardlib.org/
http://pymc-devs.github.io/pymc3/
http://www.nltk.org/

Lab 3: Introduction to Deep learning

Part 1: Feed-forward Neural Network (MLP):

Objective: Build MLP classifier to recognize handwritten digits using the
MNIST dataset.

Part 2: Weight Initilization:

Objective: Experiments with different initilization techniques (zero, xavier,
kaiming)

Part 3: Regularization:

Objective: Experiments with different regulaization techniques (early
stopping, dropout)

ot
-~

References [

® Deep learning for Artificial Intelligence master course:
TelecomBCN Bercelona(winter 2017)

® (.5191 Introduction to Deep Learning: MIT 2018.

® Deep learning Specilization by Andrew Ng: Coursera
® Deep Learning by Russ Salakhutdinov: MLSS 2017
® Introductucion to Deep learning: CMU 2018

® (Cs231n: Convolution Neural Network for Visual
Recognition: Stanford 2018

® Deep learning in Pytorch, Francois Fleurent: EPFL 2018

e Advanced Machine Learning Specialization: Coursera

https://telecombcn-dl.github.io/2017-dlai/
https://telecombcn-dl.github.io/2017-dlai/
introtodeeplearning.com
https://www.coursera.org/specializations/deep-learning
https://www.youtube.com/watch?v=TFlV57P8JKo
http://deeplearning.cs.cmu.edu/
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
http://fleuret.org/amld
https://www.coursera.org/specializations/aml

