
Foundation of Deep Learning

Anthony Faustine

Datascientist
(CeADER)

Friday 26th June, 2020

1



Learning goal

• Understand the basic building block of deep learning model.
• Learn how to train deep learning models.
• Learn different techniques used in practise to train deep

learning models.
• Understand different modern deep learning architectures

and their application.
• Explore opportunities and research direction in deep

learning.

2



Outline

3



What is Deep Learning

Deep Learning a subclass of machine learning algorithms that learn
underlying features in data using multiple processing layers with multiple
levels of abstarction.

Figure 1: ML vs Deep learning: credit:

3



Deep Learning Success
Automatic Colorization

Figure 2: Automatic colorization

Object Classification and
Detection

Figure 3: Object recognition

Image Captioning

Image Style Transfer

4

https://fstoppers.com/science/deep-learning-algorithm-automatically-colorizes-photos-138500
https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://towardsdatascience.com/image-captioning-in-deep-learning-9cd23fb4d8d2
https://dmitryulyanov.github.io/feed-forward-neural-doodle/


Deep Learning Success

Self driving car

Game

Drones

Cyber attack prediction

5

https://devblogs.nvidia.com/deep-learning-self-driving-cars/
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://newatlas.com/nvidia-camera-based-learning-navigation/50036/
http://news.mit.edu/2016/ai-system-predicts-85-percent-cyber-attacks-using-input-human-experts-0418


Deep Learning Success

Machine translation

Automatic Text Generation

Speach Processing

Music composition

6

https://arxiv.org/abs/1609.08144
https://www.theverge.com/2017/5/14/15637588/salesforce-algorithm-automatically-summarizes-text-machine-learning-ai
https://news.developer.nvidia.com/reinventing-the-hearing-aid-with-deep-learning/
https://highnoongmt.wordpress.com/2015/08/11/deep-learning-for-assisting-the-process-of-music-composition-part-1/


Deep Learning Success
Pneumonia Detection on
Chest X-Rays

Pedict heart disease risk from
eye scans

Computational biology

Diagnosis of Skin Cancer

More stories

7

https://arxiv.org/abs/1711.05225
https://arxiv.org/abs/1711.05225
https://www.nature.com/articles/s41551-018-0195-0.epdf?referrer_access_token=KeJIF4KduBHwtDObF4WWHdRgN0jAjWel9jnR3ZoTv0OMsbBDq-7d5VZef-dAA8S42ksrZ1yBZ3WBQt5pZ416cy7NQGq1FbJJy0uOTxIoC3CU8nn8fmT-RTRVz8SQRPFLm0cYdoImE_dKVIAFZ7b8nkt2psCXq84UXbc6hD3LdmhhYeg_IXJ76pHskPiwglJrfb2pbHKNRbxLRTEINRQEArNZz-Zp76__1cHbFgJzp1GZGQVDUHtU4LZPY1svcOJ0xLYVA0-iUv1GHLn9vwhFOtavgKQyaR29szwlL61RwW7KNd1S37NSElCvasUmsWlG&tracking_referrer=www.theverge.com
https://www.nature.com/articles/s41551-018-0195-0.epdf?referrer_access_token=KeJIF4KduBHwtDObF4WWHdRgN0jAjWel9jnR3ZoTv0OMsbBDq-7d5VZef-dAA8S42ksrZ1yBZ3WBQt5pZ416cy7NQGq1FbJJy0uOTxIoC3CU8nn8fmT-RTRVz8SQRPFLm0cYdoImE_dKVIAFZ7b8nkt2psCXq84UXbc6hD3LdmhhYeg_IXJ76pHskPiwglJrfb2pbHKNRbxLRTEINRQEArNZz-Zp76__1cHbFgJzp1GZGQVDUHtU4LZPY1svcOJ0xLYVA0-iUv1GHLn9vwhFOtavgKQyaR29szwlL61RwW7KNd1S37NSElCvasUmsWlG&tracking_referrer=www.theverge.com
http://msb.embopress.org/content/12/7/878
https://www.extremetech.com/extreme/243352-deep-learning-algorithm-diagnoses-skin-cancer-seasoned-dermatologists
https://www.nvidia.com/en-us/deep-learning-ai/customer-stories/


Why Deep Learning and why now?

Why deep learning: Hand-Engineered Features vs. Learned
features.

Traditional ML
• Use enginered feature to

extract useful patterns from
data.

• Complex and difficult since
different data sets require
different feature engineering
approach

Deep learning
• Automatically discover and

extract useful pattern from
data.

• Allows learning complex
features e.g speach and
complex networks.

8



Why Deep Learning and why now?

Why Now?

Big data availability
• Large datasets
• Easier collection and storage

Increase in computaional power
• Modern GPU architecture.

Improved techniques
• Five decades of research in machine learning.

Open source tools and models
• Tensorflow.
• Pytorch
• Keras

9



Outline

10



The Perceptron

A perceptron is a simple model of a neuron.

The output: ŷ = f(x) = g(z(x)) where

• x, y input, output.
• w, b weight and bias

parameter θ

• activation function: g(.)

• pre-activation:
z(x) =

∑n
i=1wixi + b

10



Perceptron

ŷ = g(z(x))

ŷ = g(b+

n∑
i=1

wixi))

ŷ = g(b + wx))

11



The Perceptron: Activation Function

Why Activation Functions?
• Activation functions add non-linearity properties to neuro

network function.
• Most real-world problems + data are non-linear.
• Activation function need to be differentiable.

Figure 4: Activation function credit:kdnuggets.com

12



Multilayer Perceptrons (MLP)

We can connect lots perceptron units together into a directed
acyclic graph.

13



Multilayer Perceptrons (MLP)

• Consists of L multiple layers (l1, l2 . . . lL) of pecepron, interconnected
in a feed-forward way.

• The first layer l1 is called the input layer ⇒ just pass the information
to the next layer.

• The last layer is the ouput layer ⇒ maps to the desired output format.
• The intermediate k layers are hidden layers ⇒ perform computations

and transfer the weights from the input layer.

14



Multilayer Perceptrons (MLP)

• Input:

x = {x1, x2, . . . xd} ∈ R(d×N)

• Pre-activation:

z(1)(x) = b(1) +w(1)(x)

where z(x)i =
∑
j w

(1)
i,j xj + b

(1)
i

Hidden layer 1
• Activation

h(1)(x) = g(z(1)(x))

= g(b(1) +w(1)(x))

• Pre-activation

z(2)(x) = b(2) +w(2)h(1)(x)

15



Multilayer Perceptrons (MLP)

Hidden layer 2
• Activation

h(2)(x) = g(z(2)(x))

= g(b(2) +w(2)h(1)(x))

• Pre-activation

z(3)(x) = b(3) +w(3)h(2)(x)

Hidden layer k
• Activation

h(k)(x) = g(z(k)(x))

= g(b(k) +w(k)h(k−1)(x))

• Pre-activation

z(k+1)(x) = b(k+1) +w(k+1)h(k)(x)

16



Multilayer Perceptrons (MLP)

Output layer
• Activation

h(k+1)(x) = O(z(k+1)(x))

= O(b(k+1) +w(k+1)h(k)(x))

= ŷ

where O(.) is output activation
function

Output activation function
• Binary classification:
y ∈ {0, 1} ⇒ sigmoid

• Multiclass classfiction:y ∈
{0,K − 1} ⇒ softmax

• Regression: y ∈ Rn ⇒ identity
sometime RELU.

Demo Playground

17

http://playground.tensorflow.org


MLP: Pytorch

import torch model = torch.nn.Sequential( torch.nn.Linear(2,
16), torch.nn.ReLU(), torch.nn.Linear(16, 64), torch.nn.ReLU(),
torch.nn.Linear(64, 1024), torch.nn.ReLU(),
torch.nn.Linear(1024, 1), torch.nn.Sigmoid() )

18



MLP: Pytorch

import torch from torch.nn import functional as F
class MLP(torch.nn.Module): def

init(self):super(MLP,self).
init()self.fc1=torch.nn.Linear(2,16)self.fc2=torch.nn.Linear(16,64)self.fc3=torch.nn.Linear(64,1024)self.out=torch.nn.Linear(1024,1)

def forward(self, x): x = F.relu(self.fc1(x)) x =
F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) out =

F.sigmoid(self.out(x))
return x

model = MLP()

19



Outline

20



Training Deep neural networks

To train DNN we need:
1 Define loss function:

L(f(x(i) : θ),y(i))

2 A procedure to compute gradient ∂Jθ
∂θ

3 Solve optimisation problem.

20



Training Deep neural networks: Define loss function

The type of Loss function is determined by the output layer of
MLP.

Binary classification
Output
• Predict y ∈ {0, 1}
• Use sigmoid σ(.) activation function.

p(y = 1|x) = 1

1 + e−x

Loss
• Binary cross entropy.

L(ŷ, y) = y log ŷ − (1− y) log(1− ŷ)

• pythontorch.nn.BCELoss()

21



Training Deep neural networks: Define loss function

Mutli class classification
Output
• Predict y ∈ {1, k}
• Use softmax σ(.) activation function.

p(y = i|x) = exp(xi)∑k
j

Loss
• Cross entropy.

L(ŷ, y) =
k∑
i=1

yi log ŷi

• pythontorch.nn.CrossEntropyLoss()

22



Training Deep neural networks: Define loss function

Regression
Output
• Predict y ∈ Rn

• Use identity activation function and sometime ReLU activation.

Loss
• Squared error loss.

L(ŷ, y) = 1

2
(yi − ŷi)2

• pythontorch.nn.MSELoss()

23



Training Deep neural networks: Compute Gradients

Backpropagation: a procedure that is used to compute gradients
of a loss function.
• It is based on the application of the chain rule and

computationally proceeds ’backwards’.

Figure 5: Back propagation: credit: Flair of Machine Learnin

24

https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html


Training Deep neural networks: Backpropagation

Consider a following single hidden layer MLP.

Forward path

z = w1x+ b1

h = g(z)

ŷ = w2h+ b2

Jθ =
1

2
||y − ŷ||2

We need to find: ∂Jθ
∂w(1) ,

∂Jθ
∂b(1) ,

∂Jθ
∂w(2)

and ∂Jθ
∂b(2)

25



Training Deep neural networks: Backpropagation

Back ward path

Jθ =
1

2
||y − ŷ||2

∂Jθ
∂ŷ

= ||y − ŷ||

26



Training Deep neural networks: Backpropagation

Back ward path

ŷ = w2h + b2

∂Jθ
∂w(2)

=
∂ŷ

∂w(2)
· ∂Jθ
∂ŷ

= hT · ||y − ŷ||

∂Jθ
∂b(2)

=
∂ŷ

∂b(2)
· ∂Jθ
∂ŷ

= ||y − ŷ||

27



Training Deep neural networks: Backpropagation

Back ward path

ŷ = w2h + b2

h = g(z)

∂Jθ
∂h

=
∂ŷ

∂h
· ∂Jθ
∂ŷ

= w(2)T · ||y − ŷ||

∂Jθ
∂z

=
∂h

∂z
· ∂Jθ
∂h

= g
′
((z)) · ∂Jθ

∂h

28



Training Deep neural networks: Backpropagation

Back ward path

z = w1h + b1

∂Jθ
∂w(1)

=
∂z

∂w(1)
· ∂Jθ
∂z

= xT · ∂Jθ
∂z

∂Jθ
∂b(1)

=
∂z

∂b(1)
· ∂Jθ
∂z

=
∂Jθ
∂z

29



Training Neural Networks: Solving optimisation problem
Objective: Find parameters θ : w and b that minimize the cost
function:

arg max
θ

1

N

∑
i

L(f(x(i) : θ),y(i))

Figure 6: Visualizing the loss landscape of neural nets: credit: Hao Li

30



Training Neural Networks: Gradient Descent

Gradient Descent
1 Initilize parameter θ,

2 Loop until converge

1 Compute gradient:
∂Jθ
∂θ

2 Update parameters:

θt+1 = θt − α∂Jθ
∂θ

3 Retrn parameter θ

Limitation: Take time to compute

31



Training Neural Networks: Stochastic Gradient Descent
(SGD)

SGD consists of updating the model parameters θ after every
sample.

SGD
Initialize θ randomly.

For each training example:
• Compute gradients: ∂Jiθ

∂θ

• Update parameters θ with update rule:

θ(t+1) := θ(t) − α∂Jiθ
∂θ

Stop when reaching criterion

Easy to compute ∂Jiθ
∂θ but very noise.

32



Training Neural Networks: Mini-batch SGD training

Make update based on a min-batch B of example instead of
single example i

Mini-batch SGD
1 Initialize θ randomly.

2 For each mini-batch B:

• Compute gradients: ∂Jθ
∂θ = 1

B

∑B
k=1

∂Jk(θ)
∂θ

• Update parameters θ with update rule:
θ(t+1) := θ(t) − α∂Jiθ∂θ

3 Stop when reaching criterion

Fast to compute ∂Jθ
∂θ

= 1
B

∑B
k=1

∂Jk(θ)
∂θ

and much better estimate of the true
gradient.

Standard procedure for training deep learning.

33



Training Neural Networks: Gradient Descent Issues

Setting the learning rate α

• Small learning rate: Converges slowly and gets stuck in false local
minima.

• Large learning rate: Overshoot became unstable and diverge.
• Stable learning rate: Converges smoothly and avoid local minima.

How to deal with this ?
1 Try lots of different learning rates and see what works for

you.
• Jeremy propose a technique to find stable learning rate

2 Use an adaptive learning rate that adapts to the landscape
of your loss function.

34

https://www.youtube.com/watch?v=JNxcznsrRb8&feature=youtu.be&t=4m45s


Training Neural Networks: Adaptive Learning rates
algorithm

1 Momentum
2 Adagrad
3 Adam
4 RMSProp

pytorch optimer algorithms

35

http://pytorch.org/docs/master/optim.html


Outline

36



Deep learning in Practice: Regularization

Regularization: Technique to help deep learning network
perform better on unsee data.
• Constraints optimization problem to discourage complex

model.

arg max
θ

1

N

∑
i

L(f(x(i) : θ),y(i)) + λΩ(θ)

• Improve generalization of deep learning model.

36



Regularization 1: Dropout
Dropout: Randomly remove hidden unit from a layer during
training step and put them back during test.
• Each hidden unit is set to 0 with probability p.
• Force network to not rely on any hidden node ⇒ prevent neural net

from ovefitting (improve performance).
• Any dropout probability can be used but 0.5 usually works well.

37



Regularization 1: Dropout

Dropout: in pytorch is implemented as pythontorch.nn.Dropout

If we have a network: model = torch.nn.Sequential(
torch.nn.Linear(1,100), torch.nn.ReLU(),
torch.nn.Linear(100,50), torch.nn.ReLU(),
torch.nn.Linear(50,2)) We can simply add dropout layers:
model = torch.nn.Sequential( torch.nn.Linear(1,100),
torch.nn.ReLU(), torch.nn.Dropout() torch.nn.Linear(100,50),
torch.nn.ReLU(), torch.nn.Dropout() torch.nn.Linear(50,2))
Note: A model using dropout has to be set in train or eval model.

38



Regularization 1: Dropout

Dropout: in pytorch is implemented as pythontorch.nn.Dropout

If we have a network: model = torch.nn.Sequential(
torch.nn.Linear(1,100), torch.nn.ReLU(),
torch.nn.Linear(100,50), torch.nn.ReLU(),
torch.nn.Linear(50,2)) We can simply add dropout layers:
model = torch.nn.Sequential( torch.nn.Linear(1,100),
torch.nn.ReLU(), torch.nn.Dropout() torch.nn.Linear(100,50),
torch.nn.ReLU(), torch.nn.Dropout() torch.nn.Linear(50,2))
Note: A model using dropout has to be set in train or eval model.

38



Regularization 2: Early Stopping

Early Stopping: Stop training before the model overfit.
• Monitor the deep learning training process from overfiting.
• Stop training when validation error increases.

Figure 7: Early stopping: credit: Deeplearning4j.com

39



Deep learning in Practice: Batch Normalization

Batch normalisation: A technique for improving the
performance and stability of deep neural networks.

Training deep neural network is complicated
• The input of each layer changes as the parameter of the previous layer

change.
• This slow down the training ⇒ require low learning rate and careful

parameter initilization.
• Make hard to train models with saturation non-linearity.
• This phenomena is called Covariate shift

To address covariate shift ⇒ normalise the inputs of each layer for each
mini-batch (Batch normalization)
• To have a mean output activation of zero and standard deviation of

one.

40



Deep learning in Practice: Batch Normalization

Batch normalisation: A technique for improving the
performance and stability of deep neural networks.

Training deep neural network is complicated
• The input of each layer changes as the parameter of the previous layer

change.
• This slow down the training ⇒ require low learning rate and careful

parameter initilization.
• Make hard to train models with saturation non-linearity.
• This phenomena is called Covariate shift

To address covariate shift ⇒ normalise the inputs of each layer for each
mini-batch (Batch normalization)
• To have a mean output activation of zero and standard deviation of

one.

40



Deep learning in Practice: Batch Normalization

If x1, x2, . . . xB are the sample in the batch with mean µ̂b and
variance σ̂2b .
• During training batch normalization shift and rescale each component

of the input according to batch statistics to produce output yb:

yb = γ � xb − µ̂b√
σ̂2
b + ε

+ β

where
• � is the Hadamard component-wise product.
• The parameter γ and β are the desired moments which are

either fixed or optimized during training.
• As for dropout the model behave differently during training and test.

41



Deep learning in Practice: Batch Normalization

Batch Normalization: in pytorch is implemented as
pythontorch.nn.BatchNorm1d

If we have a network: model = torch.nn.Sequential(
torch.nn.Linear(1,100), torch.nn.ReLU(),
torch.nn.Linear(100,50), torch.nn.ReLU(),
torch.nn.Linear(50,2)) We can simply add batch normalization
layers: model = torch.nn.Sequential( torch.nn.Linear(1,100),
torch.nn.ReLU(), torch.nn.BatchNorm1d(100)
torch.nn.Linear(100,50), torch.nn.ReLU(),
torch.nn.BatchNorm1d(50) torch.nn.Linear(50,2)) Note: A model
using batch has to be set in train or eval model.

42



Deep learning in Practice: Batch Normalization

Batch Normalization: in pytorch is implemented as
pythontorch.nn.BatchNorm1d

If we have a network: model = torch.nn.Sequential(
torch.nn.Linear(1,100), torch.nn.ReLU(),
torch.nn.Linear(100,50), torch.nn.ReLU(),
torch.nn.Linear(50,2)) We can simply add batch normalization
layers: model = torch.nn.Sequential( torch.nn.Linear(1,100),
torch.nn.ReLU(), torch.nn.BatchNorm1d(100)
torch.nn.Linear(100,50), torch.nn.ReLU(),
torch.nn.BatchNorm1d(50) torch.nn.Linear(50,2)) Note: A model
using batch has to be set in train or eval model.

42



Deep learning in Practice: Batch Normalization

When Applying Batch Normalization
• Carefully shuffle your sample.
• Learning rate can be greater.
• Dropout is not necessary.
• L2 regularization influence should be reduced.

43



Deep learning in Practice: Weight Initilization

Before training the neural network you have to initialize its
parameters.

Set all the initial weights to zero
• Every neuron in the network will computes the same

output ⇒ same gradients.
• Not recommended

44



Deep learning in Practice: Weight Initilization

Random Initilization
• Initilize your network to behave like zero-mean standard gausian

function.

wi ∼ N

(
µ = 0, σ =

√
1

n

)
bi = 0

where n is the number of inputs.

45



Deep learning in Practice: Weight Initilization

Random Initilization: Xavier initilization
• Initilize your network to behave like zero-mean standard

gausian function such that

wi ∼ N
(
µ = 0, σ =

√
1

nin + nout

)
bi = 0

where nin, nout are the number of units in the previous
layer and the next layer respectively. where n is the number
of inputs.

46



Deep learning in Practice: Weight Initilization

Random Initilization: Kaiming
• Random initilization that take into account ReLU

activation function.

wi ∼ N

(
µ = 0, σ =

√
2

n

)
bi = 0

• Recommended in practise.

47



Deep learning in Practice: Pytorch Parameter
Initilization

Consider the previous model: model
= torch.nn.Sequential(
torch.nn.Linear(1,100),
torch.nn.ReLU(),
torch.nn.BatchNorm1d(100)
torch.nn.Linear(100,50),
torch.nn.ReLU(),
torch.nn.BatchNorm1d(50)
torch.nn.Linear(50,2))

To apply weight initilization to
nn.linear module.

def weightsinit(m) :
ifisinstance(m,nn.Linear) : size =
m.weight.size()nout = size[0]nin =
size[1]variance = np.sqrt(2.0/(nin+
nout))m.weight.data.normal(0.0, variance)

model.apply(weightsinit)

48



Outline

49



Deep learning Architecture: Convolutional Neural
Network

Figure 8: CNN [credit:deeplearning.net]

• Enhances the capabilities of MLP by inserting convolution layers.
• Composed of many “filters”, which convolve, or slide across the data,

and produce an activation at every slide position
• Suitable for spatial data, object recognition and image analysis.

49

http://deeplearning.net/tutorial/lenet.html


Deep learning Architecture: Recurrent Neural Networks
(RNN)

RNN are neural networks with loops in them, allowing
information to persist.

• Can model a long time dimension and arbitrary sequence of events
and inputs.

• Suitable for sequenced data analysis: time-series, sentiment analysis,
NLP, language translation, speech recognition etc.

• Common type: LSTM and GRUs.

50



Deep learning Architecture: Auto-enceoder

Autoenceoder:A neural network where the input is the same as
the output.

Figure 9: credit:Arden Dertat

• They compress the input into a lower-dimensional code and then
reconstruct the output from this representation.

• It is an unsupervised ML algorithm similar to PCA.
• Several types exist: Denoising autoencoder, Sparse autoencoder.

51

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://codeburst.io/deep-learning-types-and-autoencoders-a40ee6754663


Deep learning Architecture: Auto-enceoder

Autoencoder consists of components: encoder, code and
decoder.
• The encoder compresses the input and produces the code,
• The decoder then reconstructs the input only using this code.

Figure 10: credit:Arden Dertat

52

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798


Deep learning Architecture: Deep Generative models

Idea:learn to understand data through generation → replicate
the data distribution that you give it.

• Can be used to generate Musics, Speach, Langauge, Image,
Handwriting, Language
• Suitable for unsupervised learning as they need lesser

labelled data to train.
Two types:

1 Autoregressive models: Deep NADE, PixelRNN,
PixelCNN, WaveNet, ByteNet

2 Latent variable models: VAE, GAN.

53

https://deepmind.com/blog/wavenet-generative-model-raw-audio/


Outline

54



Limitation

• Very data hungry (eg. often millions of examples)
• Computationally intensive to train and deploy (tractably

requires GPUs)
• Poor at representing uncertainty (how do you know what

the model knows?)
• Uninterpretable black boxes, difficult to trust
• Difficult to optimize: non-convex, choice of architecture,

learning parameters
• Often require expert knowledge to design, fine tune

architectures

54



Research Direction

• Transfer learning.
• Unsepervised machine learning.
• Computational efficiency.
• Add more reasoning (uncertatinity) abilities ⇒ Bayesian

Deep learning
• Many applications which are under-explored especially in

developing countries.

55



Python Deep learning libraries

Tensorflow

Theano

Pytorch

Keras

Edward

Pyro

MXNET

56

https://www.tensorflow.org/
http://deeplearning.net/software/theano/
http://pytorch.org/
https://keras.io/
http://edwardlib.org/
http://pymc-devs.github.io/pymc3/
http://www.nltk.org/


Lab 3: Introduction to Deep learning

Part 1: Feed-forward Neural Network (MLP):

Objective: Build MLP classifier to recognize handwritten digits using the
MNIST dataset.

Part 2: Weight Initilization:

Objective: Experiments with different initilization techniques (zero, xavier,
kaiming)

Part 3: Regularization:

Objective: Experiments with different regulaization techniques (early
stopping, dropout)

57



References I

• Deep learning for Artificial Intelligence master course:
TelecomBCN Bercelona(winter 2017)
• 6.S191 Introduction to Deep Learning: MIT 2018.
• Deep learning Specilization by Andrew Ng: Coursera
• Deep Learning by Russ Salakhutdinov: MLSS 2017
• Introductucion to Deep learning: CMU 2018
• Cs231n: Convolution Neural Network for Visual

Recognition: Stanford 2018
• Deep learning in Pytorch, Francois Fleurent: EPFL 2018
• Advanced Machine Learning Specialization: Coursera

58

https://telecombcn-dl.github.io/2017-dlai/
https://telecombcn-dl.github.io/2017-dlai/
introtodeeplearning.com
https://www.coursera.org/specializations/deep-learning
https://www.youtube.com/watch?v=TFlV57P8JKo
http://deeplearning.cs.cmu.edu/
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
http://fleuret.org/amld
https://www.coursera.org/specializations/aml

