
Deep Neural Networks (DNN)
with Energy-Based Learning

Anthony, Faustine
Data Scientist, CeADAR

7 sambaiga R anthony.faustiner@ucd.ie
� sambaiga.github.io/sambaiga/

http://twitter.com/sambaiga
mailto: anthony.faustiner@ucd.ie
https://sambaiga.github.io/sambaiga/


Outline

Introduction

Energy Based Model (EBM)

EBMs Learning

DNN-EBM applications

Conclusion

2



Deep Learning Success
Automatic Colorization

Figure 1: Automatic colorization

Object Classification and
Detection

Figure 2: Object recognition

Game

Self driving car
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https://fstoppers.com/science/deep-learning-algorithm-automatically-colorizes-photos-138500
https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://devblogs.nvidia.com/deep-learning-self-driving-cars/


Motivation
Deep Learning use finite number of computational steps (stacked layers) to
produce a single prediction.

Figure 3: Deep learning: credit:M. Mitchell Waldrop

Issues:
• When the computed output require a complex computations (complex

inference).
• When we need multiple possible outputs eg. predicting video frames.
• When labeled data is not enough.
• How to deal with uncertainty in the prediction?.
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Energy Based Model (EBM)

EBM encode dependencies between variables (x, y) by associating a scalar
parametric energy function Eθ(.) to each of the variables.

Figure 4: Energy function

• Learn to find if y is compatible to x eg. Is y an accurate
high-resolution image of x ?

• Eθ(x, y) captures some statistical property of the input data.
• Eθ(x, y) takes low values when y is compatible with x and higher

values when y is less compatible with x.
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EBM vs Neural Networks

• A feed-forward model is an explicit function that computes
y from x.
• An EBM is an implicit function that captures the

dependency between x and y
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EBM Inference
The energy Eθ(.) is used for inference, not for learning.

Conditional Energy: Eθ(x, y) vs Unconditional Energy: Eθ(x)
Inference: find values of y that make Eθ(x, y) small.

ŷ = argmin
y

Eθ(x, y) (1)

The EBM model could be used for:

• Prediction, classification, and decision-making which value
of y is most compatible with this x
• Ranking: is y1 or y2 more compatible with this x
• Conditional density estimation: what is the conditional

probability distribution over Y given x
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EBM as Probabilistic Model

Eθ(x) can be turned into a normalized joint probability distribution pθ(x)
through the Gibbs distribution:

pθ(x) =
exp(−Eθ(x))

Z(θ)
(2)

where Z(θ) =
∫
x∈x exp(−Eθ(x)dx is is the normalizing constant. Pros:

• Extreme flexibility: can use pretty much any function −Eθ you want.

Cons:
• Sampling from pθ(x) is hard.
• Evaluating and optimizing likelihood pθ(x) is hard (learning is hard)
• No feature learning (but can add latent variables)
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EBM with latent variable

Latent EBM: The output y depends on x as well as an extra
variable z (the latent variable)

Eθ = Eθ(x, y, z) (3)

Given z the Eθ(x, y, z)) can be used for both generation of x and
identification of a y implicitly.

x̂ = argmin
x

Eθ(x, y, z) (4)

ŷ = argmin
y

Eθ(x, y, z) (5)

Allows a machine to produce multiple outputs, not just one.
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Neural Network as Energy Function

Eθ(x) can be parameterized by neural networks for a wide
variety of tasks.
• Defining Eθ(x, y) as DNN allow to exploit the predictive power of

DNN and the benefits of EBMs.

Consider a DNN fθ(x[y]) =⇒ map (x, y) to a
scalar value.

Re-interpret fθ(x[y]) as the negative energy
Eθ = −fθ(x[y]) .

pθ(x, y) =
exp(fθ(x)[y]))

Z(θ)
(6)

pθ(x) =
∑
y

pθ(x, y) =
∑
y

exp(fθ(x))

Z(θ)
(7)

pθ(y|x) =
pθ(x, y)

pθ(x)
(8)
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Neural Network as Energy Function

The energy function of a data point x can thus be
defined as

Eθ(x) = −LogSumyfθ(x) = − log
∑
y

exp(fθ(x))

(9)
Optimize:

argmin
θ

EpD [− log pθ(x, y)]

= argmin
θ
−EpD [log pθ(x) + log pθ(y|x, θ)]
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EBM advantages

Provide unified framework for probabilistic and non-probabilistic learning
approaches.
• Proper normalization is not required, ⇒ EBMs don’t have the issues

arising from estimating the normalization constant in probabilistic
models.

• Allows for much more flexibility in the design of learning machines.
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EBM: learning

Learning: finding an energy function which gives lower energies
to observed configurations than unobserved ones
• Assigns low Eθ values to inputs in the data distribution and high Eθ

values to other inputs.

pθ(x) =
exp(−Eθ(x)

Z(θ)
(10)

• The log-likelihood of Eθ(x)

log pθ(x) = −Eθ − logEp(x) exp(−Eθ(x)) (11)

• For most choices of Eθ, it is hard to estimate Z(θ) ⇒ intractable
• If x is 16× 16 RGB image

• Computing Z(θ) −→ summation over
(256× 256× 256)16×16 terms.

12



EBM: MLE

• In MLE, we seek to maximize the log-likelihood function ⇒ equivalent
to minimizing the Kullback-Leibler divergence KL(pD||qθ)

• The derivative of the log-likelihood for a single example x with respect
to θ

∂ log pθ(x)

∂θ
= Epθ(x′))

[
∂Eθ(x

′)

∂θ

]
− ∂Eθ(x)

∂θ
(12)

−∂KL(pD||qθ)
∂θ

=
∂Eθ(x)

∂θ
− Epθ(x′))

[
∂Eθ(x

′)

∂θ

]
(13)

• Epθ(x′))
[
∂Eθ(x

′)
∂θ

]
is intractable.

• Can be approximated through samples (Langevin Dynamics or
MCMC).

13



EBM MLE Sampling: SGLD

• Stochastic Gradient Langevin Dynamics (SGLD) [1]–[3] use of the
gradient of Eθ(.) to undergo sampling such as

x′k = x′k−1 −
α

2

∂Eθ(x
′
k−1)

∂θ
+ εk (14)

where x0 ∼ p0(x) and εk ∼ N (0, α)

• SGDLD sampling define a distribution qθ such that x′k ∼ qθ.
• As as K →∞ and α→ 0 then qθ ∼ pθ.
• Samples are generated from the distribution defined by Eθ(.)
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EBM: Noise contrastive estimation

Given
pθ(x) =

exp−Eθ(x)
Z(θ)

(15)

Can we learn Z(θ) instead of computing it ? =⇒ c = logZ(θ)
[4], [5].
• pθ(x) = exp [−Eθ(x)− c] c is now treated as a free parameter.
• Introduce a noise distribution q(x) turn EBM estimation into

classification problem

J(θ) = EpD
[
log

pθ(x)

pθ(x) + q(x)

]
+ Eq

[
log

q(x)

pθ(x) + q(x)

]
(16)

• Strictly requirements on q(x)

1 Analytically tractable expression density.
2 Easy to draw samples from.
3 Close to data distribution ⇒ Flow Contrastive Estimation

[5].
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DNN-EBM: Generative modeling
EBM is used to model the underlying data distribution [3], [5]1

• EBM does not require an explicit neural network to generate samples
(unlike GANs, VAEs, and Flow-based models).

Figure 5: Comparison of image
generation techniques on unconditional
CIFAR-10 dataset 2

EBMs are effective generative models for multi-dimensional inputs like
images [3], [5].

1http://www.stat.ucla.edu/ ruiqigao/fce/main.html
2https://github.com/openai/ebm_code_release
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DNN-EBM: Semi-supervised learning

EBMs can be generalized to perform semi-supervised learning.

EBM tends to learn a smoothly connected cluster, which is often what we
desire in semi-supervised learning [5].
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DNN-EBM: Classification

• Joint Energy based Model applying
SGLD3 [2]

• Hybrid Discriminative Generative
Energy-based Model(HDGE)4: optimize
Supervised learning and contrastive
learning: [6] .

EBM results into improved uncertainty quantification, model-calibrated
out-of-distribution detection (OOD), and robustness to adversarial
examples.

3https://wgrathwohl.github.io/JEM/
4https://github.com/lhao499/HDGE
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DNN-EBM: Model calibration
For calibrated model the predictive confidence argmaxy p(y|x),
aligns with its misclassification rate.
• when predicts label y with 0.9 confidence it should have a 90% chance

of being correct.
• important feature for a model to have when deployed in real-world

scenarios.
• Usually evaluated in terms of the Expected Calibration Error (ECE)

EBMs significantly improves the calibration of classifier
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DNN-EBM: OOD
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DNN-EBM: Adversial Attack

• DNN are sensitive to
perturbation-based adversarial
examples.

• DNN-EBMs exhibit adversarial
robustness without explicit
adversarial training.
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DNN-EBM: compositional learning
Human intelligence is capable to compose complex concepts out of simpler
ideas ⇒ rapid learning and adaptation of knowledge.
• DNN not good at compositional learning.
• EBM exhibit compositional learning by directly combining probability

distributions [3], [7], [8]5.

5https://energy-based-model.github.io/compositional-generation-
inference/
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Conclusion

• Energy-based models very flexible class of models.
• Parameterized energy function with DNN provide a unified

framework for modeling high-dimensional probability
distributions.
• Explore, extend, and understand their applicability in

industrial applications.
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