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Deep Learning Success
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Figure 1: Automatic colorization
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Figure 2: Object recognition



https://fstoppers.com/science/deep-learning-algorithm-automatically-colorizes-photos-138500
https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://devblogs.nvidia.com/deep-learning-self-driving-cars/

Motivation

Deep Learning use finite number of computational steps (stacked layers) to
produce a single prediction.
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Figure 3: Deep learning: credit:M. Mitchell Waldrop

Issues:

® When the computed output require a complex computations (complex
inference).

® When we need multiple possible outputs eg. predicting video frames.
® When labeled data is not enough.

® How to deal with uncertainty in the prediction?.
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Energy Based Model (EBM)

EBM encode dependencies between variables (z,y) by associating a scalar
parametric energy function Ey(.) to each of the variables.

Eg(z,y)

®

Figure 4: Energy function

® Learn to find if y is compatible to = eg. Is y an accurate
high-resolution image of x 7

® FEy(z,y) captures some statistical property of the input data.

® Fy(z,y) takes low values when y is compatible with z and higher
values when y is less compatible with x.



EBM vs Neural Networks

e A feed-forward model is an explicit function that computes
y from x.

e An EBM is an implicit function that captures the
dependency between x and y

Implicit Memory

Info remembered unconsciously and effortlessly

it
S
»
?



EBM Inference

The energy Fy(.) is used for inference, not for learning.

Conditional Energy: Fy(z,y) vs Unconditional Energy: Ep(x)
Inference: find values of y that make Ey(x,y) small.

§ = argmin Ey(z,y) (1)
Y

The EBM model could be used for:

® Prediction, classification, and decision-making which value
of y is most compatible with this x

e Ranking: s y1 or yo more compatible with this x

e (Conditional density estimation: what s the conditional
probability distribution over ) given x



EBM as Probabilistic Model

Ey(x) can be turned into a normalized joint probability distribution pg(x)
through the Gibbs distribution:

po(z) = W (2)

where Z(0) = [

vex ©XP(—Eo(z)dz is is the normalizing constant. Pros:

® Extreme flexibility: can use pretty much any function —FEy you want.
Cons:

® Sampling from py(x) is hard.

® Evaluating and optimizing likelihood pg(z) is hard (learning is hard)

® No feature learning (but can add latent variables)



EBM with latent variable

Latent EBM: The output y depends on x as well as an extra
variable z (the latent variable)

Ey = E@(IE,y,Z) (3)

Given z the Ey(z,y,z)) can be used for both generation of = and
identification of a y implicitly.

Z = argmin Fy(z,y, 2) (4)

9 = argmin Ey(z,vy, 2) (5)
y

Allows a machine to produce multiple outputs, not just one.



Neural Network as Energy Function

Ey(x) can be parameterized by neural networks for a wide
variety of tasks.

® Defining Fy(z,y) as DNN allow to exploit the predictive power of
DNN and the benefits of EBMs.

Consider a DNN fy(x[y]) = map (z,y) to a
scalar value.

Classifier JEM

log p(ylx)

/ logp%x,y] Re-interpret fo(x[y]) as the negative energy
‘ Eyg = —fo(x[y]) .
o, y) = “UEI) )

Pox) =D _po(xy) =3 % (7)

_ pe(%,y)
pg(y|x)— pg(x) (8)
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Neural Network as Energy Function

The energy function of a data point x can thus be
defined as

Ep(x) = —LogSum,, fo(x) = — log Z exp(fo(x))

9)

Optimize:
arg;nin Eyp [~ logpe(x,y)]

= argmin —[E;, [log po(x) + log pe (y|x, 6)]
)

Classifier

JEM

log p(ylx)

I
log p(x, y)

log p(x)




EBM advantages

Provide unified framework for probabilistic and non-probabilistic learning
approaches.

® Proper normalization is not required, = EBMs don’t have the issues
arising from estimating the normalization constant in probabilistic
models.

® Allows for much more flexibility in the design of learning machines.

Generative Model “
enerative Model .

Discriminant Model
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EBM: learning

Learning: finding an energy function which gives lower energies
to observed configurations than unobserved ones

® Assigns low Ey values to inputs in the data distribution and high Fjy
values to other inputs.

_exp(—Ey(x)

= 1
® The log-likelihood of Ey(x)
log pe(z) = —Eg — 10g Ep(a) exp(—Ee(z)) (11)

® For most choices of Ey, it is hard to estimate Z() = intractable
e Jf x is 16 x 16 RGB image

® Computing Z(§) — summation over
(256 x 256 x 256)16%16 terms.
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EBM: MLE

In MLE, we seek to maximize the log-likelihood function = equivalent
to minimizing the Kullback-Leibler divergence K L(ppl|qe)

® The derivative of the log-likelihood for a single example = with respect

to 0
dlogpe(z) _ 0Es(z')]  0Ey(x)
o0 - EPe(l'/)) o0 90 (12)
_OKL(ppllge) _ OEe(z) OEq(z')
R e R ) (13)

* K, [%ér/)} is intractable.

® Can be approximated through samples (Langevin Dynamics or
MCMC).
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EBM MLE Sampling: SGLD

Stochastic Gradient Langevin Dynamics (SGLD) [1]-[3] use of the
gradient of Fy(.) to undergo sampling such as

/ o OFp(Xj—1)

k=17 g 90 + €k (14)

’
X =X

where xo ~ po(x) and ex ~ N (0, a)
SGDLD sampling define a distribution gy such that xj, ~ gg.
As as K — oo and o — 0 then gy ~ po.

Samples are generated from the distribution defined by FEy(.)
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EBM: Noise contrastive estimation

Given T

Can we learn Z(0) instead of computing it 7 = ¢ = log Z(0)
[4], [5]-

® pg(z) = exp [—Eq(z) — ] ¢ is now treated as a free parameter.

(15)

® Introduce a noise distribution g(x) turn EBM estimation into
classification problem

_ pe(x) o q(x)
30) =Ep Inge(mq(x)] B [l & @ o] 1Y

® Strictly requirements on g(x)

@ Analytically tractable expression density.

® Easy to draw samples from.

® Close to data distribution = Flow Contrastive Estimation
[5].
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DNN-EBM: Generative modeling
EBM is used to model the underlying data distribution [3], [5]*

® EBM does not require an explicit neural network to generate samples
(unlike GANs, VAEs, and Flow-based models).

Data  Glow-MLE Glow-FCE EBM-FCE

(a) GLOW Model (b) EBM

Figure 5: Comparison of image
Figure 1: Comparison of trained EBM and Glow models on generation techniques on unconditional
2-dimensional data distributions. CIFAR-10 dataset 2

EBMs are effective generative models for multi-dimensional inputs like
images [3], [5].

http://www.stat.ucla.edu/ ruigigao/fce/main.html

https://github.com/openai/ebm code release
16



DNN-EBM: Semi-supervised learning

EBMs can be generalized to perform semi-supervised learning.

~
{
\

Po,(x) Pe,(x) Pe,(x)
Observed data (1) 3,000 iterations (2) 8,000 iterations (3)30,000 iterations

Figure 5: Tlustration of FCE for semi-supervised learning on a 2D example, where the data distribution is two spirals
belonging to two categories. Within each panel, the top left is the learned unconditional EBM. The top right is the learned
Glow model. The bottom are two class-conditional EBMs. For observed data, seven labeled points are provided for each
category.

EBM tends to learn a smoothly connected cluster, which is often what we
desire in semi-supervised learning [5].
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DNN-EBM: Classification

Classifier JEM

log p(y|x)

® Joint Energy based Model applying

SGLD? [2]

® Hybrid Discriminative Generative
Energy-based Model(HDGE)*: optimize
Supervised learning and contrastive
learning: [6] .

log p(x, y)

L

Neural Method

eur ) Supervised  Supervised HDGE

Net Dataset |} orming  Contrastive JEM HDGE@©US) o0 0o (aly) only)
CIFARI0 | 958 %63 944 96.7 96.4
CIFAR100 ‘ 799 80.5 78.1 80.9 80.6

‘Table 1: Comparison on three standard image classification datasets: All models use the same batch size
of 256 and step-wise learning rate decay. the number of training epochs is 200. The baselines Supervised
Contrastive [21], JEM [8], and our method HDGE are based on WideResNet-28-10 [50].

f
i
EBM results into improved uncertainty quantification, model-calibrated

out-of-distribution detection (OOD), and robustness to adversarial
examples.

3https://wegrathwohl.github.io/ JEM/
“https://github.com/lhao499/HDGE



DNN-EBM: Model calibration

For calibrated model the predictive confidence arg max, p(y|z),
aligns with its misclassification rate.

® when predicts label y with 0.9 confidence it should have a 90% chance
of being correct.

® jmportant feature for a model to have when deployed in real-world
scenarios.

® Usually evaluated in terms of the Expected Calibration Error (ECE)

% o

E 5%
3 /‘4
og) 05 L0

0

4% 05

5 05 5
Accuracy Accuracy Accuracy

Figure 2: CIFAR-100 calibration results. The model is WideResNet-28-10 (without BN). Expected calibration
error (ECE) [[10] on CIFAR-100 dataset under various training losses.

EBMs significantly improves the calibration of classifier
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DNN-EBM: OOD

Novelty -l
Detection ﬂ L) - (Ugls::;")
\ (

vs
Detection = Outlier
\ 5 (Abnormal)
. — / Class

Single-Class
Multi-Class o In-distribution i Out-of-distribution
=l Dataset - Datasets
(CIFAR-10) (SVHN, LSUN, etc.)
Out-of-distribution { 1
Detection \
Model PixelCNN++ Glow EBM (ours)
SVHN 0.32 0.24 0.63
Textures 0.33 0.27 0.48
Constant Uniform 0.0 0.0 0.30
Uniform 1.0 1.0 1.0
CIFAR10 Interpolation 0.71 0.59 0.70
Average 0.47 0.42 0.62

Figure 10: AUROC scores of out of distribution classification on differ-
ent datasets. Only our model gets better than chance classification.



DNN-EBM: Adversial Attack

+.007 x

panda
58% confidence

gibbon
99% confidence

® DNN are sensitive to
perturbation-based adversarial
examples.

® DNN-EBMs exhibit adversarial
robustness without explicit
adversarial training.

Bascline

— M

Ady Training
HDSE

(a) Lo Robustness
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Ady Training

TEM

HDSE ~

0 100 200 300 100 500
€

(b) Ly Robustness

Figure 3: Adversarial robust-
ness results with PGD attacks.
HDGE adds considerable robust-
ness to standard supervised train-
ing and achieves comparable ro-
bustness with JEM.



DNN-EBM: compositional learning

Human intelligence is capable to compose complex concepts out of simpler
ideas = rapid learning and adaptation of knowledge.

® DNN not good at compositional learning.

® EBM exhibit compositional learning by directly combining probability

distributions [3], [7], [8]°.

Cube 1 Cube 2 Two Cubes

Figure 12: Concept inference of multiple objects with EBM
trained on single cubes and tested on two cubes. The color image
is the input and in grayscale is the output energy map over all posi-
tions. The energy map of two cubes correctly shows the bimodality
which is close to the summation of the front two energy maps.

Figure 7: Continual learning of concepts. A position EBM is
first trained on one shape (cube) of one color (purple) at different
positions. A shape EBM is then trained on different shapes of one
fixed color (purple). Finally, a color EBM is trained on shapes of
many colors. EBMs can continually learn to generate many shapes
(cube, sphere) with different colors at different positions.

Shttps://energy-based-model.github.io/compositional-generation-

inference/
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Conclusion

® Energy-based models very flexible class of models.

® Parameterized energy function with DNN provide a unified
framework for modeling high-dimensional probability
distributions.

e Explore, extend, and understand their applicability in
industrial applications.

23
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