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Wait

Figure 1: Credit: Deloite Analysis
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The (W 1): What is Intelligence?

Intelligence: the ability to learn and perform suitable techniques
to solve problem.

Figure 2: credit:Lindah Mavengere

A fully pre-programmed factory robot is flexible, accurate, and
consistent but not intelligent.
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https://www.thehumancapitalhub.com/articles/Intelligence-Matters-And-Here-Is-Why


The W 1: What is Artificial Intelligence

AI
Artificial Intelligence

the science and engineering of making intelligent
machines.
machines that can learn, at least somewhat as human
beings do.

ML

DL

Machine Learning
A subset of AI studying
how computer agents can improve their perception,
knowledge, thinking, or actions based on experience
or
data.

Deep learning
A subset of ML  that use cascade  multi-layer
(artificial) neural networks of non-linear preprocessing
for feature learning and pattern recognition.

Supervised-ML

A computer learns from input-output pairs in order
to predict the output of the new input.

Unsupervised-ML

Discover the pattern and learn the structure of
unlabeled data.

Reinforcement-ML

Agent learn action sequences that optimize its
total rewards

Data science
Understanding or making sense of data e.g visualization,
exploratory analysis, data products etc

DS

Figure 3: AI defined
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The W 1: What is ML?

Machine learning (ML): the science (and art) of programming
computers so they can learn from data.

Learn from data
• Automatically detect patterns in data and
• Build models that explain the world
• Use the uncovered pattern to understand what is happening

(inference) and to predict what will happen(prediction).

This gives computers the ability to learn without being explicitly
programmed.
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The W 2: Why AI?

Consider how you would write a spam filter using traditional
programming techniques.
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The W 2:Why ML?

• Hard problems in high dimensions, like many modern CV
or NLP problems require complex models ⇒ difcult to
program the correct behavior by hand.
• Machines can discover hidden, non-obvious patterns.
• A system might need to adapt to a changing environment.
• A learning algorithm might be able to perform better than

its human programmers.
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The W 3: AI in Energy
Energy forecasting (Demand
and supply)

Grid and microgrids planning
and management

SDG-7 monitoring and
mapping

Improve Energy literacy and
efficiency
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https://www.mdpi.com/1996-1073/14/3/719
https://www.mdpi.com/1996-1073/14/3/719
https://www.theverge.com/2017/5/14/15637588/salesforce-algorithm-automatically-summarizes-text-machine-learning-ai
https://www.theverge.com/2017/5/14/15637588/salesforce-algorithm-automatically-summarizes-text-machine-learning-ai
https://news.developer.nvidia.com/reinventing-the-hearing-aid-with-deep-learning/
https://news.developer.nvidia.com/reinventing-the-hearing-aid-with-deep-learning/
https://www.mdpi.com/1996-1073/14/3/719
https://www.mdpi.com/1996-1073/14/3/719


The W 3: AI and EO for Public Goods
Urban Planning and
Management

Natural resources monitoring
and management

Improve Agriculture
productivity and enhance
Food Security

Improve National Statics and
SDGs monitoring
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https://eo4sd-urban.info/
https://eo4sd-urban.info/
https://www.mdpi.com/2073-4395/10/5/641/htm
https://www.mdpi.com/2073-4395/10/5/641/htm
https://www.mdpi.com/2073-4395/10/5/641/htm
https://earsc.org/2020/11/12/leveraging-eo-services-to-help-countries-monitoring-sdgs/
https://earsc.org/2020/11/12/leveraging-eo-services-to-help-countries-monitoring-sdgs/


The W 4:When to apply AI

Figure 4: credit:Full stack DL

More reference:cs329s ML System Design Lecture #2 part 5
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https://fullstackdeeplearning.com/spring2021/lecture-5/#notes
https://www.overleaf.com/project/603f5a5e96598274289a3a21


The H: Data and Resources

Data
• Data strategy that support the

use of data-driven solutions.
• Data development that follow

acceptable standards and best
practices.

• Development of tools and
platform for data
sharing/hosting

Resources
• Invest in upgrading legacy IT

systems.
• Invest on necessary computing

resources for an AI project.
• Hire and retain AI talents

(Juniors and Seniors).
• Engage research centers and

universities.
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https://arxiv.org/abs/1609.08144
https://news.developer.nvidia.com/reinventing-the-hearing-aid-with-deep-learning/


The H:Research and Collaboration

Research
• Invest on Research and

Development (R&D)
• Develop research-driven

innovation.
• Encourage

experimental-mindset.
• Invest on capacity and

capabilities required to drive
research-innovation agenda.

Collaborate
• Collaborate with domains

experts (local and
international).

• Research institute-govt
partnership project.

• Collaborate with research
centres and companies leading
in AI (local and international)
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https://arxiv.org/abs/1609.08144


The H:Strategies

Figure 5: Credit:Deloite:Crafting an AI strategy for government leaders
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https://www2.deloitte.com/xe/en/insights/industry/public-sector/ai-strategy-for-government-leaders.html?site=insights-global-en


The H:AI Policy

Figure 6: credit:RwandaICT

More reference: National AI Policy Making
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https://medium.com/@thebabar/national-ai-policy-making-challenges-and-opportunities-4c591541b943


The H: AI readiness

Figure 7: credit:deloite:AI readiness for government

More reference: National AI Policy Making
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https://www2.deloitte.com/us/en/insights/industry/public-sector/ai-readiness-in-government.html
https://medium.com/@thebabar/national-ai-policy-making-challenges-and-opportunities-4c591541b943


ML life-cycle

Figure 8: credit: CS 329S: Machine Learning Systems Design
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https://stanford-cs329s.github.io/


Where can I contribute?

Dataset
Algorithm

development Policy/Strategies

Theoretical
contribution Applied Research Metrics and

Evaluations

Ethics,
Explainability and

Interpretability of AI
algorithms

Figure 9: Contributions
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Identify open and specific problem

Establish hypothesis about the problem.

Review literature
• Identify open questions that

need answers.
• Learn about common methods,

datasets and libraries.
• Lay out goals & objectives,

constraints, and evaluation
criteria.
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Identify datasets

Identify data-set(s) to benchmark your solution.

At least one dataset that appeared in related prior work.

Where to find datasets
• Build them.
• Scrape them.
• Find them (contact authors).
• Generate them (artificial

data).

Take time to understand your data: exploratory analysis.
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Establish baseline

Define your baseline:Any publishable performance with simplest
approach.

Write code quickly
• data-pipeline.
• Training-evalution-pipeline.
• Analysis-pipeline.

First get a baseline running ⇒ this is good research practise.
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Run Experiments

Track experiments: Take notes of what each experiment was
meant to test.

Figure 10: credit:Full stack DL

• Use recommended best
practices for managing
and monitoring ML
experiments.

• Version code, data and
ML experiments.

• Use existing frameworks
and tools.

More references: CS329: Versioning & experiment tracking
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https://fall2019.fullstackdeeplearning.com/course-content/infrastructure-and-tooling
https://docs.google.com/presentation/d/15ZrLFzimfy-8ob7mJ0qHPNyVoTtSfKBF5gPPG5f0Lz8/edit##slide=id.p


Experiment Evaluation

When the cook tastes the soup that is formative; when the
customer testes that is summative.

Formative evaluation
• They guide further

investigations.
• Compare design option A to

B, tune hyper-parameters etc.

Summative evaluation
• compare your approach to

previous approaches,
• compare different major

variants of your approach.

Don’t save all your qualitative evaluation for the summative
evaluation.
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Experiment Evaluation

Follow prior work precisely in how to choose and implement
main evaluation metric.

Quantitative evaluation
• Show metric as many variants

of your model as you can.
• Test for statistical significance

(for highly variable models or
small difference performance).

• If your results are not
significant. say so and explain
what you found.
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Experiment Evaluation

Conduct a thorough analysis

Qualitative-evaluation
• convince reader for your

hypothesis ⇒ look to prior
work to get started.

• Show examples of system
output.

• Plot how your model
performance varies with the
amount of data.

• Present error analysis.
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Conclusion
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about machine learning
• Probabilistic Machine Learning - a book series by Kevin
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• Model-based Machine Learning, John Winn
• Foundations: How to design experiments in NLU
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https://mlstory.org/?s=09
https://mlstory.org/?s=09
https://probml.github.io/pml-book/
https://probml.github.io/pml-book/
https://www.mbmlbook.com/
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