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Efficiency through Simplicity: MLP-based Approach
for Net-Load Forecasting with Uncertainty

Estimates in Low-Voltage Distribution Networks
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Abstract—Power demand forecasting is becoming a crucial tool
for the planning and operation of Low Voltage (LV) distribution
systems. Most importantly, the high penetration of Photovoltaics
(PV) power generation as part of Distributed Energy Resource
(DER)s has transformed the power demand forecasting prob-
lem at the distribution level into net-load forecasting. This
paper introduces a novel and scalable approach to probabilistic
forecasting at LV substation with PV generation. It presents
a multi-variates probabilistic forecasting approach, leveraging
Quantile Regression (QR). The proposed architecture uses a
computationally efficient feed-forward neural net to capture the
complex interaction between the historical load demands and
covariate variables such as solar irradiance. It is empirically
demonstrated that the proposed method can efficiently produce
well-calibrated forecasts, both auto-regressively or in a single
forward pass. Furthermore, a benchmark against four state-of-
the-art forecasting approaches shows that the proposed approach
offers a desirable trade-off between forecasting accuracies, cali-
brated uncertainty, and computation complexity.

Index Terms—Deep Neural Networks (DNN) Feed-forward
Neural Network (FFN) LV distribution Substation, Multilayer
Perceptron (MLP) , Net-Load, Probabilistic Forecasting, PV
Generation, Quantile Regression

I. INTRODUCTION

THE power grid is experiencing a transition from cen-
tralized power grids to decentralized ones, driven by

the integration of Renewable Energy Sources (RES), Energy
Storage System (ESS) and electrification of sectors such as
Electric Vehicle (EV) and Electric Heating Systems (EHS).
This shift is causing significant changes in power generation
patterns and demands and poses new challenges for power flow
management in LV distribution network [1]. Recent research
emphasizes the importance of precise generation and demand
forecasts at the LV distribution network level to ensure smooth
network operation [1], [2]. Accurate short-term forecasts are
indeed crucial for maintaining a stable and reliable LV distri-
bution network. These forecasts, covering the next 30 minutes
to a few days, play a significant role in ensuring that the
LV grid operates within key grid constraints, such as voltage
levels, thermal limits, and phase balance [3], [4]. The ability
of Distribution System Operator (DSO)s to forecast power
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demand and supply at LV distribution network is particularly
critical due to the volatile demands and stochastic power
generation from RES. For example, accurate forecasting of
LV power demand and supply is essential in optimizing the
operation of ESS. This allows for efficient charging during
periods of abundant green electricity and discharge during
times of high demand and low availability from renewables.

As a result of the growing uncertainty in load demands
and generation, there has been a noticeable shift towards
using probabilistic methods to forecast these variables in
LV distribution, as seen in recent studies [5], [6]. Unlike
deterministic forecasts, probabilistic forecasts provide uncer-
tainty estimates, which are essential in accurately predicting
LV power demands, particularly in situations where the use
of DER exacerbates the level of uncertainty. [4]. However,
many machine learning-based forecasting techniques, partic-
ularly those utilizing DNN, often overlook the importance
of computational efficiency and scalability. These factors
are crucial in reducing computation costs when deploying
models in large LV distribution networks with numerous LV
substations [7]. Furthermore, for effective decision-making,
models with fast inference times are essential. This ensures
that forecasting models can support real-time or near-real-time
decision processes in the dynamic context of LV distribution
networks, which often require quick responses to changing
conditions and load demands [7]. An emerging technique
in LV distribution forecasting is net-load forecasting, which
combines power demand and generation forecasting at this
level. Net-load forecasting at the LV level is increasingly
critical due to the rising penetration of DER such as PV and
wind turbines [8]–[10]. This method provides a more accurate
estimate of the power required from the grid, particularly in
regions with a high proportion of DER. For example, in a
scenario with PV generation, the net-load PNL,t at a given
time instant t can be calculated using PNL,t = PD

L,t − PPV
L,t ,

as illustrated in Fig. 1. where PD
L,t is the load demand, PPV

L,t

is the PV production, and PWND
L,t is the wind production.

Several researchers have emphasized the importance of
accurate net-load forecasting for efficient grid management
and planning, given the difficulties associated with directly
measuring the generation from distributed generation at the
LV distribution level [11]–[13].

It is worth noting that net-load forecasting at LV level is
more challenging than at High Voltage (HV) transmission
level due to the low number of aggregated demand profiles
and volatile RES generation, resulting in less predictable
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Fig. 1: Schematic diagram of an overview of the net-load forecasting at LV substation.

group behaviors. In addition, forecasting net-load at the LV
distribution level remains challenging due to several factors,
including the integration of behind-the-meter PV systems and
the intermittent and varying nature of weather variables such
as solar irradiation, which significantly impact the net-load, as
highlighted in [14].

Furthermore, although different models have been proposed
to tackle both problems, meteorological variables are the
most common explanatory input, particularly temperature,
solar irradiation, and wind speed [15]. The base assumption
behind this design decision is that the strong correlation
between load and temperature can help explain the variations
in demand (e.g., an increase in demand in the winter due to
colder temperatures). In contrast, solar irradiation and wind
speed can help explain the variation in the yield of RES.
However, the interactions between these variables or their
effects on the forecasting results have been seldom explored,
and the reported results are not unanimous. For example, in
[9], the authors report that temperate can be detrimental to
forecasting accuracy. In contrast, in [8], the authors report
that the temperature accounted for half of the variation in
the load. Further research is thus necessary to understand the
complex relationships between these variables and their impact
on forecasting accuracy.

In light of these considerations, our research aligns with
the perspective that accurate net-load forecasting is crucial,
and we adopt an integrated approach to capture the practical
challenges encountered by DSOs in dealing with unobserved
behind-the-meter PV installations [16]. The proposed method-
ology exclusively relies on historical net-load data and other
exogenous variables that impact PV and power demands to
predict the future net-load. Consequently, our methodology
provides a more realistic and applicable framework for net-
load forecasting in the presence of distributed energy resources
since it does not assume previous knowledge of the installed
PV capacity.

Our study proposes a scalable architecture that utilizes
MLPs to effectively capture the intricate relationship be-
tween historical net-load and meteorological variables. We
specifically employ Quantile Regression (QR), which is fully

parameterized to make predictions with some level of un-
certainty, and thus we name our architecture Parameterized
Quantile Forecast using Multilayer Perceptron (MLPQF). The
proposed approach is evaluated on two datasets: Madeira Low-
Voltage distribution substation dataset in Portugal (MLVS-PT)
and The Stentaway substation dataset in Plymouth-UK (SPS-
UK), which represent real-world LV distribution networks
in Europe. To state more precisely, this paper makes the
following original research contributions:

1) We introduce an efficient MLP-based architecture for
probabilistic net-load forecasting at the LV substation
level. Our model utilizes QR parameterized by MLP to
estimate the conditional distribution of net-load fore-
casts. It extends a previous model described in [17],
streamlining and optimizing the architecture to make it
more feasible for industrial applications.

2) We perform comprehensive experiments on two real-
world datasets to evaluate the stability of our pro-
posed approach and the accuracy of uncertainty es-
timates for the Auto-Regressive Inference (ARI) net-
load forecasting task. The experiments also show the
model’s effectiveness in providing forecasts for various
forecasting horizons and the effectiveness and accuracy
of the uncertainty estimates for the ARI task.

3) We comprehensively analyze the influence of mete-
orological variables in specific temperature and solar
irradiations on net-load forecasting performance. The
empirical results suggest that solar radiation is a strong
predictor of net-load demand.

4) Lastly, we benchmark the proposed approach against
statistical, conventional machine-learning, and DNN
state-of-the-art forecasting approaches. The empirical
results suggest that MLPQF provide a desirable trade-off
between forecasting ac-curacies, calibrated uncertainty,
and computation complexity.

The remainder of this paper is structured as follows. The
background and related research work are presented in Sec-
tion II. Section III details the proposed forecasting approach’s
components and implementation. The case-study specification,
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including the dataset, input features, performance metrics,
description of the four conducted experiments, and the per-
formance evaluation methodology, is described in Section IV.
The results obtained from each experiment are presented and
discussed in Section V. Finally, Section VI concludes the
paper by providing an overview of the main implications of
this work for real-world smart-grid applications, discussing
its limitations, and suggesting future directions for further
research.

II. RELATED WORKS

A. Short-term Net-load Forecasting

Short-term net-load forecasting can be performed through
either additive or aggregated methods, as noted in works such
as [11], [18], [19]. The additive approach involves decompos-
ing the net-load into its constituent parts and separately fore-
casting each component, as described in studies such as [20]–
[22]. Conversely, aggregated methods rely solely on historical
net-load data and other variables (e.g., meteorological data)
as the input to the forecasting model. However, the practical
implementation of the additive approach is often limited, as it
necessitates the availability of real PV power data, which may
be challenging to obtain or prohibitively expensive, as noted
in [11].

The study in [18], [19] compared the efficacy of additive
and integrated net-load forecasting methods and found that
the integrated model outperforms the additive model. Still,
the availability of limited public and free datasets for LV
distribution network presents a challenge for researchers in
the field. As a result, most of the existing research has been
benchmarked on hypothetical LV networks generated from
aggregated smart-meter data rather than actual datasets [7]

B. Probabilistic DNN Forecasting Approaches

DNNs have become popular for power forecasting due to
their ability to capture complex nonlinear trends and depen-
dencies between multivariate time series [19], [23]. As a
result, there has been a surge in the use of DNNs for power
forecasting, with various DNN architectures being employed.
These include Recurrent Neural Networks (RNNs) like Long-
Short Term Memorys (LSTMs) and Gated Recurrent Neu-
ral Networkss (GRNNs) [24], as well as transformer-based
approaches [25]. Transformer-based architectures have been
developed to improve the accuracy and robustness of RNNs
based forecasting models and have shown promising results in
various applications, including power forecasting. Yet similar
to RNNs, these approaches are computationally expensive
[26].

As a result, there has been a shift towards DNN forecasting
architectures based on MLP like NBEATS, [27] and NHiTS
[26], which are more efficient in terms of computation but
still offer comparable performance to RNNs and transformer-
based approaches. Computational complexity becomes essen-
tial when considering the real-world application of demand
forecasting at the LV distribution substations where DSOs have
to manage hundreds of substations [28]. It is thus vital to have

forecasting models that are fast to train and infer and require
few computational resources.

However, despite the superiority of DNN-based approaches
to forecasting problems, as reported in recent literature [24],
[26], they often do not convey calibrated uncertainty estimates
in their predictions compared to the traditional probabilistic
model. To address this issue, various techniques, including
probabilistic DNN, Bayesian Neural Network (BNN), and
model ensembles, have been proposed.

The probabilistic DNN learn the aleatoric uncertainty by
approximating the forecasting distribution through the use
of parametric or non-parametric distributions, such as the
Gaussian distribution, Gaussian Mixture density networks [6],
Normalizing Flow [5], [6] and QR [17], [29]. On the other
hand, BNN, such as variational inference [30], and dropout-
based inference [31], learn a posterior distribution of DNN pa-
rameters that quantify epistemic uncertainty [12]. Finally, the
model ensembles learn DNN uncertainty by training multiple
DNN networks through bootstrapping or ensembling methods.

In this respect, the non-parametric QR based approach has
recently received attention for probabilistic load forecasting as
it models complex distributions without making any apriori
assumptions on the data. Compared to other techniques, in
most cases, QR produces well-calibrated uncertainty estimates
in short-time horizons such as day-ahead [17], [29]. However,
the capability of these models in delivering well-calibrated
uncertainty estimates for multi-variate load and net-load fore-
casting in LV substation over extended time horizons remains
an area that requires further investigation. This is particularly
crucial in practical scenarios, as DSOs are required to make
simultaneous predictions for multiple targets, encompassing
different time horizons ranging from a few minutes to multiple
days.

III. PROPOSED METHODS

This section describes in detail the components of the
proposed forecasting approach.

A. Problem Definition

Short-term load forecasting aims to predict the near-future
load yt+1:H over the forecast horizon H (ranging from a few
hours to one week). The prediction is made based on input
variables, which may include past observed net-load demands
yt−L:t with a time lag of L and covariates features c such
as weather forecasts, temperature, and solar irradiance. Time-
index features like holidays can also be included as covariates.

The input variables in this work are divided into two
categories: historical or past features xt−L:t, and future
covariates ct+1:t+H . Historical features refer to past data
(including historical load demands yt−L:t, historical covari-
ates ct−L:t and any other variables, which may be useful
for understanding the underlying trends and patterns in the
data. In contrast, future covariates ct+1:t+H are known in
advance and may help make predictions of power demand
yt+1:t+H . Thus our goal is to provide probabilistic forecast
yH = {yt+1, . . . yt+H} given the historical features (including
the past targets) xL = {xt−L, xt−L+1 . . . xt} and future
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covariates cH = {ct+1, ct+2 . . . ct+H} such that; ŷH ∼
p(yH |xL, cH)

B. Uncertainty Modelling with QR

We use a non-parametric QR to model the conditional
distribution p(yH |xL, cT ). Specifically, we express it as:

p(yH |xL, cT ) = Qθ(τ̂θ) (1)

where τ̂θ ∈ [0, 1] is a set of N × H quantile probabilities
satisfying:

τ̂1θt < τ̂2θt < . . . τ̂N−1
θt < τ̂Nθt (2)

Qθ(τ̂θ) is N ×H quantile functions.
Unlike most DNN for QR, which assume fixed quantile

fractions, our approach parameterizes both quantile fractions
and quantile functions with DNN. To this end, the quantile
fractions and quantile function are represented by two FFNs:
the Fraction Proposal Network (FPN) and Quantile Value
Network (QVN) as illustrated in Fig. 8. The FPN learns
to generate quantile fractions while the QVN maps these
quantile fractions to the quantile function. This allows for
end-to-end learning of the quantile fractions and the quantile
function. Thus a non-parametric probabilistic density estimate
p(yH |xL, cH) can be obtained by gathering a set of N
quantile estimates such that:

p(yt|xL, ct) = {Qθ(τ̂
1
θt), Qθ(τ̂

2
θt) . . . Qθ(τ̂

N
θt )} (3)

This allows the quantification of the uncertainty of a forecast
using confidence region Γ(1−α) = [Qθ(τ̂

L
θt, Qθ(τ̂

U
θt], which

gives a lower Qθ(τ̂
L
θt) and an upper bound Qθ(τ̂

U
θt) between

which the predictions lie with a certain probability pτ =
1 − α ∈ [0, 1] where α is a small value that represents the
level of uncertainty that is acceptable [32].

C. MLPQF Model Architecture

The proposed MLPQF architecture is based on the work
presented in [17]. In contrast to [17], the MLPQF is a
lightweight architecture implemented solely using Multilayer
Perceptron (MLP), with the capability to capture the sequence
order of the time-series signal, which is vital in time-series
forecasting [33], [34].

Fig. 2: The overall hierarchical architecture of MLPQF com-
prises two encoders, denoted as g and h. Each encoder consists
of a flattening layer and lightweight MLP blocks.

As shown in Fig. 2, the proposed MLPQF is composed of
various blocks constructed using FFN. The first block is the
Layernorm, which is a normalization step used to normalize
the input features. The Layernorm helps to reduce the internal
covariate shift, which is the change in the distribution of the
inputs to a layer that occurs during training. This helps to
stabilize the training process and improve the performance
of the MLPQF. The Layernorm is followed by the input
embedding block, which is used to enhance the FFN based
encoders in capturing the sequence order of the time-series
signal, which is vital in time-series forecasting [33], [34].

In our experimentation, we explored various strategies for
positional embedding. Among these strategies, we found the
Rotary Positional Embedding (RoPE) technique to be particu-
larly effective, as detailed in Section V-A. The RoPE technique
leverages a rotation matrix to convey absolute positional
information, offering flexibility in accommodating different se-
quence lengths. This flexibility is crucial because it allows our
MLPQF to learn context-dependent feature representations,
ultimately enhancing its capability for long-term forecasting
while effectively capturing underlying trends in the time-series
data.

Following the input normalization and embedding stage, our
architectural design includes two vital elements: the encoder
for historical features, denoted as g(xL; θ), and the encoder for
future covariates, represented as h(cH ; θ). Our design choice
was inspired by the research conducted by Chu et al. [35],
which highlights the significant impact of covariate features,
such as solar radiation, on predicting future net-load.

The two encoders comprised a flatten layer, a set of MLP
block, Batchnorm, and a non-linear activation function as
illustrated in Fig. 2. The sigmoid linear unit (silu) activation
function defined as silu(x) = x· 1

1+e−x is used as an activation
function. The flattening layer reshapes multi-dimensional input
data xL and cH into a one-dimensional feature representation,
facilitating its subsequent processing by the MLP block. The
gθ(xL) takes in the lagged inputs features xL to produce a
feature representation ϕ(g) while h(c; θ) takes in the time-
varying a priori known future covariates cH and produces a
feature representation ϕ(h). such that

ϕ(g) = gθ (E(xL)) (4)
ϕ(h) = hθ (E(cH)) (5)

ϕ(gh) = ϕ(g) + ϕ(h) (6)

where E(x; θ) = Dropout [Emb(Layernorm(x))].
For optimization, we employed the Adam optimizer with

an initial learning rate of 0.001 for all methods. The learning
rate was reduced by 0.1 when the number of iterations reached
75% and 90%, respectively.

Rather than utilizing the multi-head attention technique
suggested in [17], we opted for merging the two feature rep-
resentations to create a cohesive feature representation ϕ(fh).
Unexpectedly, this uncomplicated method outperformed the
application of multi-head attention as detailed in Section V-A.
This result aligns with the findings in [25], which showed that
intricate modules such as attention could have a detrimental
effect on model performance in time-series forecasting.
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Finally, the two encoders are succeeded by FPN and QVN
block, which are responsible for converting the feature rep-
resentation ϕ(gh) into probabilistic forecasts. As explained
in section Section III-B, the FPN’s primary objective is to
learn the quantile fractions τ̂θ that meet the requirements
outlined in Eq. (4). To accomplish this, it employs an FFN a
Dropout layer, and a Softmax activation function, as depicted
in Fig. 3a. Thus the FPN receives the ϕ(gh) feature as input
and produces N + 1 adjustable fractions τ1:N+1

t with τ1t = 0
and τN+1

t = 1 such that:

ϕ(τ) = Dropout [FPN(ϕ(gh))]

τ1:N+1
θt = [τ0, csumSoftmax(ϕ(τ))]

where τ0 is a vector of zeros. The csumsoftmax(xk) =∑k
i=1 Softmax(xi) is cumulative sum of the Softmax output.

This ensures that τN+1
θt = 1. Finally the τ̂nθt estimate is

obtained as:

τ̂nθt =
τnθt + τn+1

θt

2
(7)

The FPN layer’s weight is initialized in such a way that the
initial quantile probabilities follow a uniform distribution.

(a) (b)

Fig. 3: FPN and QVN architectures (a) FPN (b) QVN.

After learning the quantile fractions, the estimate of the
forecasted distribution is estimated with QVN (ref to Fig. 3b).
The QVN takes in τ̂θ and ϕ(fh) to produce Qθ(τ̂θ)

Φ(τ̂θ) = Relu(Emb(τ̂θ))

Qθ(τ̂θ) = Decoder ([Φ(τ̂θ)⊙ ϕ(gh)] + ϕ(gh))

The purpose of RoPE(τ̂θ) is to capture the interaction of the
learned τ̂θ, which is then utilized to predict the quantile value
Qθ(τ̂θ). It’s worth noting that the method used in this study
for computing the embedding Φ(τ̂θ) is different from the one
employed in [17], as it doesn’t require the use of additional
hyper-parameters.

D. Loss Function and Training Procedures

The parameters of the MLPQF can be optimized by mini-
mizing the pinball loss, as defined in Eq. (8):

Lτ (ϵτ ) =
1

T

T∑
t=1

N∑
n=1

max
[
ϵτt

n
· τ, (1− τ) · ϵτt

n
)
]

(8)

where ϵτ = yt−Qθ(τ̂θt) However, the pinball loss has a non-
differentiable point at the origin, as reported in [36]. To address
this issue, we adopt a smooth approximation of the pinball
loss, using the Huber function, as defined in Section III-D:

ρκ(ϵτn
t
) =

{
1
2ϵ

2
τn
t

if |ϵτn
t
| ≥ κ

κ|ϵτn
t
| − 1

2κ if ϵτn
t
< 0,

This results in the definition of the Huber quantile loss,
which is expressed in Eq. (9):

Lτ (ρκ(ϵ)) =
1

T

T∑
t=1

N∑
n=1

|τnt − I{ϵτn
t
< 0}|

ρκ(ϵτn
t
)

κ
(9)

This loss function enables the scaling of errors ϵτt
n

that fall
below a certain threshold κ, based on their magnitude. To
further refine the sharpness of the predicted quantile values,
we add a penalty term to the Huber quantile loss, as follows:

L(γ,Qθ(τ̂θt) =
β

T

T∑
t=1

N−1∑
n=1

max
[
γ,Qθ(τ̂

n+1
θt )−Qθ(τ̂

n
θt)

]
(10)

where β is a scalar value controlling the magnitude of the
penalty term and γ regulates the sharpness of the quantiles.

While the Huber quantile loss optimizes the quantile func-
tion as specified in Eq. (9), we also incorporate the 1-
Wasserstein metric in our learning process for the quantile
fractions. The 1-Wasserstein metric is defined as:

W1(Qθ(τ̂θt), Qθ(τ)) =
T∑

t=1

N−1∑
n=0

∫ τn+1
t

τn
t

|Qθ(τ
n
t )−Qθ(τ̂

n
θt)|dτ

(11)
and its derivative with respect to τ is given by:

∂W1

∂τ
=

T∑
t=1

2Qθ(τ
n
t )−Qθ(τ̂

n
θt)−Qθ(τ̂

n−1
θt ) (12)

As a result, the parameters θ of the proposed MLPQF model
are learned by jointly minimizing the following loss function
using Adam optimizer with a batch size of 64,

Jθ(y, Qθ(τ̂θt)) =
1

K

K∑
i=1

Lτ (ρκ(ϵ))
i + L(γ,Qθ(τ̂θt))

i

+W1(Qθ(τ̂θt), Qθ(τ))
i

where K is the number of data samples in the training
set. The initial learning rate was set to 1e−3 and was later
decreased by 0.1 when the number of iterations reached 75%
and 90%, respectively. The values of β, γ, and κ were set to
3.6e−4, 3e−6, and 0.5, respectively.
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IV. CASE STUDY SPECIFICATION

The proposed approach is evaluated on two real-life sub-
station datasets: 1) the MLVS-PT [17], and 2) the SPS-UK
[37].

The MLVS-PT data is sourced from a LV distribution sub-
station located on a geographically isolated island in Southern
Europe serving around 100 consumers. The substation has a
250 kVA transformer and 36 kWp of PV generation. The net-
load demand is measured at one-minute intervals and covers
the period from March 2019 to June 2022. MLVS-PT also
includes meteorological data at different sample rates from 5
to 60-minute intervals, obtained from SolCast [38]. For this
study, the net-load and meteorological data were resampled to
a resolution of 30 minutes.

The SPS-UK encompasses distribution network demand, PV
generation, and weather information for a primary substation
located in Plymouth, UK The load demand and PV power
generation, recorded in MW, were measured at 30-minute
intervals between November 2017 and July 2020. The net-
load was calculated by subtracting the PV generation from
the load demand. The weather data were interpolated linearly
to match the 30-minute resolution of the PV and load demand.

A. Input Features
The input to the model consists of historical demand (net-

load) and covariates, both past and future. The covariates fea-
tures include temperature (Temp), global horizontal irradiance
(Ghi), and time-based features that account for factors such
as weather conditions, natural cycles, and calendar days, as
described in [17], [39]. In line with the approach of [17], the
date-time related features are transformed using sinusoidal and
cosine transformations to capture daily and yearly patterns
such that ETi,t =

[
sin( 2πtiTsi

), cos( 2πtiTsi
)
]

where Tsi is the
period for each of the exogenous features. For instance, the
day of the week has a periodicity of 7, whereas the hour
of a day has a periodicity of 24. The following time-based
features were selected based on a correlation analysis: hour of
the day, session of the day (night or day), day of the week, and
day of the month. The original time-based features and their
corresponding sine and cosine transformations were analyzed
to inform the selection.

B. Performance Metrics
We adopt Normalized Root Mean Squared Error (NRMSE)

to assess the forecasting performance. NRMSE defined as
1
P

√∑t=T
t=1

(ŷt−yt)2

T is the forecast metric that provides a
percentage of how high the mean squared error is compared
to the installed capacity (P ) [17].

In addition, we follow [17] and use the combined coverage,
width, and NRMSE scoring metric (CWE), which assess both
the forecasting accuracy and predictive uncertainty of the
probabilistic forecasting model. The CWE is the geometric
harmonic mean of the γpcip ∈ [0, 1] a coverage-based score
and γnmpi ∈ [0, 1] an interval-width score defined as per
Eq. (13):

CWE = 2 · (1−NRMSE) · γnmpi · γpcip
γpicp + γnmpi

(13)

C. Evaluation Procedure

The proposed method is evaluated using back-testing cross-
validation. This approach simulates making predictions for
future time steps while considering the temporal dependencies
present in the data, as reported in [40]–[42]. The process
involves training the model on the complete historical data
using a sliding window that progresses through the time series.
At each step, a fixed segment of the future time series is
designated as the testing set, immediately following the end
of the training set thereby ensuring that the model is never
tested on data that preceded the training data [41], [42]. More
precisely, we adopt 10-fold back-testing cross-validation with
an expanding window, in which the initial historical period is
set to at least 12 months and the fixed future time window
is set to 4 months. The sliding window is extended by two
months as we move forward in the time series. Each model is
trained on 90% of the training window for 100 iterations and
validated on the remaining 10%.

TABLE I: Hyper-parameters used across the three experi-
ments.

Parameter Layers Dropout Emb size N Neurons

Value 2 0.25 16 90 256

D. Research Questions

To evaluate the proposed approach, we framed four research
questions. Next, the different RQs and respective experimental
procedures are described.
RQ1 How do various model design choices impact the per-

formance of the proposed MLPQF algorithm?
RQ2 What is the influence of meteorological variables on net-

load forecasting?
RQ3 What is the effectiveness and accuracy of uncertainty

estimates provided by the MLPQF for ARI net-load
forecasting task?

RQ4 Can a lightweight complex MLPQF algorithm rival
state-of-the-art machine learning algorithms, such as
DNN, in terms of forecasting performance and compu-
tational efficiency?

To address RQ1, we investigated the performance of the
MLPQF model in various scenarios, including different fore-
casting horizons, lagged windows, the use of positional em-
bedding, and the attention mechanism. Initially, we evaluated
the performance of the proposed MLPQF model for forecast-
ing horizons ranging from 1 hour to 7 days, representing very
short to medium-term forecasting horizons as discussed in
[43]. Additionally, we analyzed the impact of the length of
the lagged (context) window denoted by L on the accuracy of
future predictions, with window lengths varying from 1 day to
7 days. To conduct this analysis, we employed a backtesting
cross-validation strategy, where each model underwent training
on the SPS-UK dataset for approximately 50 iterations.

For RQ2, we examined the impact of covariate features on
net-load forecasting performance. Specifically, we considered
temperature (Temp), Global Horizontal Irradiance (Ghi), and
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time-based features, as they were readily available in the SPS-
UK and MLVS-PT datasets. As a result, four forecasting mod-
els were established, each incorporating a unique combination
of covariate features, including [Ghi, Time], [Temp, Time],
[Ghi, Temp, Time], and [Time]. These models were trained
for a limited number of iterations, specifically 50 iterations,
to assess their performance.

Regarding RQ3, we examined the robustness of the pro-
posed proposed MLPQF in forecasting the ARI [44]. The ARI
is a widely used forecasting method in real-time applications,
where the model’s output is used to predict future time
horizons based on the initial time horizon. An incorrect or
improperly calibrated initial model can propagate errors to
subsequent predictions [44]. To address this, the first step
was to train a model on the three datasets using a back-
testing cross-validation strategy with an expanding window,
as described in Section IV-C. The resulting model was then
evaluated using the ARI to produce k-day ahead forecasts,
where k ∈ 2, 3, 4, 5, 6, 7 days ahead [42].

Finally, to address RQ4, we conducted a comprehensive
comparison of the performance of MLPQF against six well-
established and state-of-the-art forecasting models using two
datasets MLVS-PT and SPS-UK. To this end, two statistical
models were selected: a naive seasonal (S-Naive) [40] and
Multiple Seasonal-Trend decomposition using LOESS (MTL)
[45] model. Along with these statistical models, two popular
machine learning models, CatBoost (CAT) [46] and Random-
Forest (RF) [47], were also included in the comparison.

Additionally, four state-of-the-art DNN-based forecasting
models were considered, including N-BEATS [27], N-HiTS
[26], LSTM and Full Parameterized Sequencce to Quantile
(FPQ) [17]. FPQ-MLP is the genetic DNN architecture with
full-parameterised QR forecasting model introduced in [17].
For a fair comparison with the proposed approach, we use
an MLP encoder and name it FPQ-MLP. N-BEATS and N-
HiTS are simple architectures based on MLP and have shown
competitive performance at lower computational costs. The
LSTM has been defacto DNN architecture for power demand
forecasting [48]. To mitigate any potential bias between the
models, efforts were made to ensure their similarity. This was
accomplished by constraining the number of parameters to
comparable levels across all models. Further information on
the model configurations can be found in Table I.

V. RESULT AND DISCUSSION

A. RQ1: MLPQF Model Analysis

The results presented in Fig. 4a show the forecasting per-
formance of various forecast horizons with different context
windows. The findings reveal that the MLPQF model is
proficient in providing accurate short-term forecasts, ranging
from 1-hour to 7-day horizons, with an average NRMSE score
between 0.02 to 0.08. Additionally, the results show a slight
decline in NRMSE score as the forecasting horizon increases
from 1 day to 7 days. However, the MLPQF model remains
competitive with a score below 0.1, which is equivalent to a
forecasting accuracy of 90%. Remarkably, outliers exhibiting
an NRMSE score falling between 0.2 and 0.5 were exclusively

detected in cases of extremely short forecasting horizons,
spanning from just one hour to a single day. These findings
suggest that forecasting horizons of at least one day ahead
provide a favorable bias-variance trade-off, in contrast to very
short forecasting horizons.

(a) Forecasting Horizon

(b) Context Window

Fig. 4: Results of MLPQF for different forecasting horizons
and lagging window (RQ1).

In terms of the context window, the study revealed that a
context window L that is equal to or slightly larger than the
forecasting horizon H is adequate in achieving accurate fore-
casting performance. This was evidenced by the comparable
performance of the historical window when forecasting for
a specific horizon, as illustrated in Fig. 4b. This aligns with
the results in Fig. 4a, which suggest that a historical window
of less than a day is particularly effective for very short-
term forecasting (one hour to six hours). Thus, small context
windows are adequate for accurate short-term forecasting.
As a result, the subsequent experiments were carried out
using 96 data points as input and forecasting 48 steps. This
configuration enabled the models to predict the upcoming
day’s net-load based on the data from the two preceding days.

PosEmbRoEmb NoneRoPoEmb
Embending Strategy
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0.08

N
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E

(a)

AutumnWinter SpringSummer
0.00

0.05

0.10

0.15
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R

M
S

E

None

ATTN

(b)

Fig. 5: Impact of positional encoding and attention mechanism
in the MLPQF design (RQ1).

We also analyze the effectiveness of the positional embed-
ding and multi-head attention building blocks. As shown in
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Fig. 5a, embedding leads to improved forecasting compared
to the absence of embedding (None), with Rotary Embedding
achieving a higher score. However, we were surprised that
combining different embedding strategies did not result in
better performance. Finally, we evaluated the efficacy of two
different techniques for combining feature representations: the
multi-head attention method proposed in [17] and a simple
addition operation (represented as ”None” in the graph). As
shown in Fig. 5b, the latter method outperformed the former,
indicating that using more complex modules like attention
may not always enhance model performance and can introduce
unnecessary complexity.

B. RQ2: Influence of Meteorological Variables on Net-load
Forecasting

The obtained results for this experiment are presented in
Figs. 6a and 6b. It is observed that Ghi exhibits a strong

None Temp Ghi Ghi-Temp
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0.08
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0.12
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(a) NRMSE

None Temp Ghi Ghi-Temp
0.6

0.7

0.8

0.9

C
W

E

MLVS-PT

SPS-UK

(b) CWE

Fig. 6: Results of MLPQF for different covariates variable:
(Experiment 1).

predictive capacity for net-load forecasting in both the MLVS-
PT and SPS-UK datasets, as evidenced by average CWE scores
of 0.75±0.15 and 0.77±0.17, respectively. On the other hand,
Temp accounts for an average CWE score of 0.72 on the two
datasets.

Unexpectedly, the combination of Ghi and Temp does not
enhance forecasting accuracy, with both datasets achieving an
almost identical average CWE score of 0.76. These findings
imply that Ghi could be a more effective predictor for net-load
forecasting. We also observe that the forecasting performance
is penalized when only time-derived features are used as inputs
(None in the graph).

C. RQ3: Robustness of ARI Forecasting

The obtained results for the second experiment are sum-
marised in Fig. 7. We observe that the proposed MLPQF
achieves competitive Normalised Root Mean Squared Error
(NRMSE) (< 0.083) and CWE (> 0.65) on average for ARI
with different days ahead up to one week. Still, a minimal
score deterioration as the number of days increases can be
observed from the results. The obtained result implies that the
MLPQF is capable of learning a well-calibrated day-ahead
forecast that could be leveraged for ARI as visualized in
Figs. 7a and 7b.

D. RQ4: Benchmark Against Baselines

The results of the benchmark experiment are shown in
Fig. 8a. The performance of our MLPQF model was found

1 2 3 4 5 6 7
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0.4
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(b) CWE

Fig. 7: ARI results for MLPQF (Experiment 2).

to be state-of-the-art, with an NRMSE score of 0.07±0.03
and 0.08±0.04 for the MLVS-PT and SPS-UK datasets,
respectively. The FPQ-MLP model also exhibited similar
performance, scoring 0.07±0.02 and 0.09±0.04 on MLVS-
PT and SPS-UK datasets. These findings suggest that the
modifications made to the MLPQF architecture did not com-
promise the forecasting accuracy. This represents a significant
improvement of around 12% over the LSTM model for the
MLVS-PT dataset and a gain of more than 30% over the
other baselines. For the SPS-UK dataset, our MLPQF model
showed an improvement of around 20% compared to the
LSTM and CAT models and more than 30% compared to the
other baselines.
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Fig. 8: Forecasting ability of the MLPQF against the alterna-
tives (Experiment 4).

Upon analyzing the results presented in Fig. 8b, we found
that our proposed model outperforms other probabilistic mod-
els by exhibiting a CWE score of 0.73±0.15 for both datasets.
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This is slightly higher compared to the FPQ-MLP’s score
of 0.71 ±0.15 (2% ↑) on MLVS-PT and 0.68±0.18 (6% ↑)
on SPS-UK dataset. Compared to other models, we see an
improvement of about 21%. These results suggest that the
proposed lightweight architecture not only maintains fore-
casting accuracy but also improves probabilistic performance.
From Figs. 9a and 9b, we see that the net-load forecasting
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Fig. 9: Forecasting ability of the MLPQF against the alterna-
tives: Seasonal variations.

performance varies across seasons, with the lowest NRMSE
in winter and autumn, in contrast to summer and spring. This
variation may be due to the seasonal variability in power
demand and generation patterns. Specifically, summer and
spring demand patterns may be influenced by unpredictable
factors, such as weather fluctuations or changes in consumer
behavior during holidays or vacations, making it more difficult
to accurately predict demand compared to the more stable
demand patterns observed in winter and autumn. This high-
lights the need to consider seasonality in the development and
evaluation of electricity demand forecasting models.

To thoroughly assess the computational efficiency of our
proposed approach, we conducted a thorough comparison
against eight different baselines. Our evaluation considered
both computational training and inference time, as illustrated
in Fig. 10. The results (Fig. 10a) clearly show that the S-
Naive and MSTL statistical baselines required the least amount
of training time, followed by conventional machine learning
models RF and CAT when compared to our MLPQF approach.
However, MLPQF is an eager learner, meaning that a model
is created during the training phase, which takes more time
to train than statistical and conventional machine learning
baselines. Nonetheless, our method is still faster to train
compared to LSTM (82.4% ↓) and FPQ-MLP (51.4% ↓).
Furthermore, its training speed is slightly higher than that of
NHiTs (13.4% ↓) and NBEATS (18.8% ↓).

On the other hand, MLPQF demonstrated a much shorter
inference time comparable to S-Naive (refer to Fig. 10b).
Specifically, it only required 0.064 seconds to forecast a 4-
month data horizon, in contrast to FPQ-MLP, which neces-
sitated 0.76s (91.6% ↓). Additionally, we observed that the
inference speed of MLPQF surpassed that of MSTL (74.0%
↓) and RF (94.0% ↓) models. Notably, it outperformed state-
of-the-art DNN models such as NBEATS and NHITS by
reducing inference times by a remarkable 98.5%. Furthermore,
it exhibited over 300 times faster inference than LSTM,
highlighting its superior efficiency.

(a) Training time (b) Inference speed

Fig. 10: Computational performance of the MLPQF against
the four alternatives (Experiment 4).

VI. CONCLUSION

This paper presented a MLPQF approach, which consti-
tutes a novel and scalable net-load probabilistic forecast
at the LV secondary substations with high PV generation.
The proposed architecture leverages simple but effective MLP
to effectively capture non-linear and complex relationships
between historical variables and future covariates, thereby
enabling accurate forecasting of the net-load of LV substations.
Through empirical experimentation on two real-world datasets,
we have demonstrated the efficacy of the proposed architecture
for net-load forecasting at a LV substation distribution level.

By utilizing NRMSE as a measure of forecasting accuracy,
it is shown that the proposed approach achieves a consistent
and accurate predictive performance. Specifically, our model
achieves a low NRMSE of approximately 0.07 and 0.08 on
the two datasets, showcasing its superior forecasting capability
in both day-ahead and ARI forecasting. This represents a
substantial improvement, ranging between 12% to 30% when
compared to baseline models. In addition to forecasting ac-
curacy, the model’s complexity was evaluated by measuring
the execution time for both training and inference. Notably,
the proposed approach approximates the speed of a seasonal
naive approach, being 300 times faster compared to state-of-
the-art benchmarks such as LSTM.

Ultimately, the obtained results validate that uncomplicated
architectures, such as those based on MLP, can yield com-
petitive performance while keeping computation requirements
low, unlike more intricate DNN models such as transformers.
Additionally, the study illustrates that it is feasible to use ARI
to generate forecasts for varying timeframes without requiring
the training of supplementary models.

However, a limitation of this work is the geographical bias
inherent in the datasets used for evaluation. Both datasets
were collected from the same European region, which might
hinder the generalizability of our proposed MLPQF architec-
ture to other geographic locations characterized by distinct
energy consumption patterns. To address these limitations,
future research should focus on evaluating the performance of
MLPQF using additional LV distribution substation datasets
with diverse geographical locations and installed capacities.
In this respect, it is important to stress the need for continued
efforts in deploying monitoring technology at the LV level and
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sharing other real-world datasets with the public in order to
continually expand the research in this area.

This work has also highlighted the crucial role of covariate
features in the performance of the power load forecasting
model. Specifically, we have shown that solar radiation (Ghi)
is an essential covariate feature that significantly enhances
the accuracy of net-load forecasts. This result suggests that
solar irradiance might be a crucial predictor for net-load as
it explains the fluctuations in PV production. Consequently,
to enhance net-load forecasting, utilities should consider in-
tegrating solar irradiation measurements into their forecasts
instead of relying only on temperature. However, it should
be stressed that this observation requires further investigation
as the presented analysis was limited to the two datasets. A
comprehensive study encompassing a wider range of datasets
and diversifying covariate factors is essential to establish the
generalizability of these observations.
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